盗版岩与酒

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 8848|回复: 6

ZT:上帝掷骰子吗——量子物理史话(10-3)(10-4)

[复制链接]
发表于 2004-4-3 18:33 | 显示全部楼层 |阅读模式
Think Simulation
主题:上帝掷骰子吗——量子物理史话(10-3)
版权所有:castor_v_pollux 原作 提交时间:10:35:20 04月02日



第十章 不等式



计算机的发明是20世纪最为重要的事件之一,这个新生事物的出现从根本上改变了人类的社会,使得我们的能力突破极限,达到了一个难以想象的地步。今天,计算机已经渗入了我们生活的每一个角落,离开它我们简直寸步难行。别的不说,各位正在阅读的本史话,便是用本人的膝上型计算机输入与编辑的,虽然拿一台现代的PC仅仅做文字处理简直是杀鸡用牛刀,或者拿伊恩?斯图尔特的话说,“就像开着罗尔斯?罗伊斯送牛奶”,但感谢时代的进步,这种奢侈品毕竟已经进入了千家万户。而且在如今这个信息商业社会,它的更新换代是如此之快,以致人们每隔两三年就要不断地开始为自己“老旧”电脑的升级而操心,不无心痛地向资本家们掏出那些好不容易积攒下来的银子。

回头看计算机的发展历史,人们往往会慨叹科技的发展一日千里,沧海桑田。通常我们把宾夕法尼亚大学1946年的那台ENIAC看成世界上的第一台电子计算机,不过当然,随着各人对“计算机”这个概念的定义不同,人们也经常提到德国人Konrad Zuse在1941年建造的Z3,伊阿华州立大学在二战时建造的ABC(Atanasoff-Berry Computer),或者图灵小组为了破解德国密码而建造的Collosus。不管怎么样,这些都是笨重的大家伙,体积可以装满整个房间,有的塞满了难看的电子管,有的拖着长长的电线,输入输出都靠打孔的纸或者磁带,和现代轻便精致的家庭电脑比起来,就好像美女与野兽的区别。但是,如果我们把看起来极为不同的这两位从数学上理想化,美女和野兽在本质上却是一样的!不管是庞大的早期计算机,还是我们现在使用的PC,它们其实都可以简化成这样一种机器:它每次读入一个输入,并且视自己当时内态的不同,按照事先编好的一个规则表做出相应的操作:这操作可以是写入输出,或者是改变内态,或者干脆什么都不做乃至停机。这里的关键是,我们机器的输入和输出可以是无限多的,但它的内态和规则表却必须是有限的。这个模型其实也就是一切“计算机”的原型,由现代计算机的奠基人之一阿兰?图灵(Alan Turing)提出,也称作“图灵机”(The Turing Machine)。在图灵的原始论文中,它被描述成某种匣子样的东西,有一根无限长的纸带贯穿其中,一端是作为输入,另一端则是输出。磁带上记录了信息,一般来说是0和1的序列。这台机器按照需要移动磁带,从一端读入数据,并且按照编好的规则表进行操作,最后在另一端输出运算结果。

我们如今所使用的电脑,不管看上去有多精巧复杂,本质上也就是一种图灵机。它读入数据流,按照特定的算法来处理它,并在另一头输出结果。从这个意义上来讲,奔腾4和286的区别只不过是前者更快更有效率而已,但它们同样做为图灵机来说,所能做到的事情其实是一样多的!我的意思是,假如给予286以足够的时间和输出空间(可以记录暂时的储存数据),奔腾机所能做到的它同样可以做到。286已经太高级了,即使退化成图灵机最原始的形式,也就是只能向左或向右移动磁带并做出相应行动的那台机器,它们所能解决的事情也是同样多的,只不过是快慢和效率的问题罢了。

计算机所处理的信息在最基本的层面上是2进制码,换句话说,是0和1的序列流。对计算机稍稍熟悉的朋友们都知道,我们把每一“位”信息称作一个“比特”(bit,其实是binary digit的缩写),例如信息1010,就包含了4个bits。8个bits就等于1个byte,1024个bytes就是1K,1024K=1M,1024M=1G,各位想必都十分清楚了。

对于传统的计算机来说,1个bit是信息的最小单位。它要么是0,要么是1,对应于电路的开或关。假如一台计算机读入了10个bits的信息,那相当于说它读入了一个10位的2进制数(比方说1010101010),这个数的每一位都是一个确定的0或者1。这在人们看来,似乎是理所当然的。

但是,接下来就让我们进入神奇的量子世界。一个bit是信息流中的最小单位,这看起来正如一个量子!我们回忆一下走过的路上所见到的那些奇怪景象,量子论最叫人困惑的是什么呢?是不确定性。我们无法肯定地指出一个电子究竟在哪里,我们不知道它是通过了左缝还是右缝,我们不知道薛定谔的猫是死了还是活着。根据量子论的基本方程,所有的可能性都是线性叠加在一起的!电子同时通过了左和右两条缝,薛定谔的猫同时活着和死了。只有当实际观测它的时候,上帝才随机地掷一下骰子,告诉我们一个确定的结果,或者他老人家不掷骰子,而是把我们投影到两个不同的宇宙中去。

大家不要忘记,我们的电脑也是由微观的原子组成的,它当然也服从量子定律(事实上所有的机器肯定都是服从量子论的,只不过对于传统的机器来说,它们的工作原理并不主要建立在量子效应上)。假如我们的信息由一个个电子来传输,我们规定,当一个电子是“左旋”的时候,它代表了0,当它是“右旋”的时候,则代表1(通常我们会以“上”和“下”来表示自旋方向,不过可能有读者会对“上旋”感到困惑,我们换个称呼,这无所谓)。现在问题来了,当我们的电子到达时,它是处于量子叠加态的。这岂不是说,它同时代表了0和1?

这就对了,在我们的量子计算机里,一个bit不仅只有0或者1的可能性,它更可以表示一个0和1的叠加!一个“比特”可以同时记录0和1,我们把它称作一个“量子比特”(qubit)。假如我们的量子计算机读入了一个10bits的信息,所得到的就不仅仅是一个10位的二进制数了,事实上,因为每个bit都处在0和1的叠加态,我们的计算机所处理的是2^10个10位数的叠加!

换句话说,同样是读入10bits的信息,传统的计算机只能处理1个10位的二进制数,而如果是量子计算机,则可以同时处理2^10个这样的数!

利用量子演化来进行某种图灵机式的计算早在70年代和80年代初便由Bennett,Benioff等人进行了初步的讨论。到了1982年,那位极富传奇色彩的美国物理学家理查德?费因曼(Richard Feynman)注意到,当我们试图使用计算机来模拟某些物理过程,例如量子叠加的时候,计算量会随着模拟对象的增加而指数式地增长,以致使得传统的模拟很快变得不可能。费因曼并未因此感到气馁,相反,他敏锐地想到,也许我们的计算机可以使用实际的量子过程来模拟物理现象!如果说模拟一个“叠加”需要很大的计算量的话,为什么不用叠加本身去模拟它呢?每一个叠加都是一个不同的计算,当所有这些计算都最终完成之后,我们再对它进行某种幺正运算,把一个最终我们需要的答案投影到输出中去。费因曼猜想,这在理论上是可行的,而他的确猜对了!

1985年,我们那位在埃弗莱特的谆谆教导和多宇宙论的熏陶下成长起来的大卫?德义奇闪亮登场了。他仿照图灵当年走的老路子,成功地证明了,一台普适的量子计算机是可能的。所谓“普适机”(universal machine)的概念可能对大家有点陌生以及令人困惑,它可以回到图灵那里,其基本思想是,存在某种图灵机,把一段指令编成合适的编码对其输入,可以令这台机器模拟任何图灵机的行为。我无意在这里过于深入细节,因为那是相当费脑筋的事情,虽然其中的数学一点也不复杂。如果各位有兴趣深入探索的话可以参阅一些介绍图灵工作的文章(我个人还是比较推荐彭罗斯的《皇帝新脑》),在这里各位所需要了解的无非是:我们聪明睿智的德义奇先生证明了一件事,那就是我们理论上可以建造一种机器,它可以模拟任何特殊量子计算机的过程,从而使得一切形式的量子计算成为可能。传统的电脑处理信息流的时候用到的是所谓的“布尔逻辑门”(Boolean Logic Gate),比如AND,OR,NOT,XOR等等。在量子计算机中只需把它们换成相应的量子逻辑门即可。

说了那么多,一台量子计算机有什么好处呢?

德义奇证明,量子计算机无法实现超越算法的任务,也就是说,它无法比普通的图灵机做得更多。从某种确定的意义上来说,量子计算机也是一种图灵机。但和传统的机器不同,它的内态是不确定的,它同时可以执行多个指向下一阶段的操作。如果把传统的计算机称为决定性的图灵机(Deterministic Turing Machine, DTM),量子计算机则是非决定性的图灵机(NDTM)。德义奇同时证明,它将具有比传统的计算机大得多的效率。用术语来讲,执行同一任务时它所要求的复杂性(complexity)要低得多。理由是显而易见的,量子计算机执行的是一种并行计算,正如我们前面举的例子,当一个10bits的信息被处理时,量子计算机实际上操作了2^10个态!

在如今这个信息时代,网上交易和电子商务的浪潮正席卷全球,从政府至平民百姓,都越来越依赖于电脑和网络系统。与此同时,电子安全的问题也显得越来越严峻,谁都不想黑客们大摇大摆地破解你的密码,侵入你的系统篡改你的资料,然后把你银行里的存款提得精光,这就需要我们对私隐资料执行严格的加密保护。目前流行的加密算法不少,很多都是依赖于这样一个靠山,也即所谓的“大数不可分解性”。大家中学里都苦练过因式分解,也做过质因数分解的练习,比如把15这个数字分解成它的质因数的乘积,我们就会得到15=5×3这样一个唯一的答案。

问题是,分解15看起来很简单,但如果要分解一个很大很大的数,我们所遭遇到的困难就变得几乎不可克服了。比如,把10949769651859分解成它的质因数的乘积,我们该怎么做呢?糟糕的是,在解决这种问题上,我们还没有发现一种有效的算法。一种笨办法就是用所有已知的质数去一个一个地试,最后我们会发现10949769651859=4220851×2594209(数字取自德义奇的著作The Fabric of Reality),但这是异常低效的。更遗憾的是,随着数字的加大,这种方法所费的时间呈现出几何式的增长!每当它增加一位数,我们就要多费3倍多的时间来分解它,很快我们就会发现,就算计算时间超过宇宙的年龄,我们也无法完成这个任务。当然我们可以改进我们的算法,但目前所知最好的算法(我想应该是GNFS)所需的复杂性也只不过比指数性的增长稍好,仍未达到多项式的要求(所谓多项式,指的是当处理数字的位数n增大时,算法所费时间按照多项式的形式,也就是n^k的速度增长)。

所以,如果我们用一个大数来保护我们的秘密,只有当这个大数被成功分解时才会泄密,我们应当是可以感觉非常安全的。因为从上面的分析可以看出,想使用“暴力”方法,也就是穷举法来破解这样的密码几乎是不可能的。虽然我们的处理器速度每隔18个月就翻倍,但也远远追不上安全性的增长:只要给我们的大数增加一两位数,就可以保好几十年的平安。目前最流行的一些加密术,比如公钥的RSA算法正是建筑在这个基础之上。

但量子计算机实现的可能使得所有的这些算法在瞬间人人自危。量子计算机的并行机制使得它可以同时处理多个计算,这使得大数不再成为障碍!1994年,贝尔实验室的彼得?肖(Peter Shor)创造了一种利用量子计算机的算法,可以有效地分解大数(复杂性符合多项式!)。比如我们要分解一个250位的数字,如果用传统计算机的话,就算我们利用最有效的算法,把全世界所有的计算机都联网到一起联合工作,也要花上几百万年的漫长时间。但如果用量子计算机的话,只需几分钟!一台量子计算机在分解250位数的时候,同时处理了10^500个不同的计算!

更糟的事情接踵而来。在肖发明了他的算法之后,1996年贝尔实验室的另一位科学家洛弗?格鲁弗(Lov Grover)很快发现了另一种算法,可以有效地搜索未排序的数据库。如果我们想从一个有n个记录但未排序的数据库中找出一个特定的记录的话,大概只好靠随机地碰运气,平均试n/2次才会得到结果,但如果用格鲁弗的算法,复杂性则下降到根号n次。这使得另一种著名的非公钥系统加密算法,DES面临崩溃。现在几乎所有的人都开始关注量子计算,更多的量子算法肯定会接连不断地被创造出来,如果真的能够造出量子计算机,那么对于现在所有的加密算法,不管是RSA,DES,或者别的什么椭圆曲线,都可以看成是末日的来临。最可怕的是,因为量子并行运算内在的机制,即使我们不断增加密码的位数,也只不过给破解者增加很小的代价罢了,这些加密术实际上都破产了!

2001年,IBM的一个小组演示了肖的算法,他们利用7个量子比特把15分解成了3和5的乘积。当然,这只是非常初步的进展,我们还不知道,是否真的可以造出有实际价值的量子计算机,量子态的纠缠非常容易退相干,这使得我们面临着技术上的严重困难。虽然2002年,斯坦弗和日本的科学家声称,一台硅量子计算机是可以利用现在的技术实现的,2003年,马里兰大学的科学家们成功地实现了相距0.7毫米的两个量子比特的互相纠缠,一切都在向好的方向发展,但也许量子计算机真正的运用还要过好几十年才会实现。这个项目是目前最为热门的话题之一,让我们且拭目以待。

就算强大的量子计算机真的问世了,电子安全的前景也并非一片黯淡,俗话说得好,上帝在这里关上了门,但又在别处开了一扇窗。量子论不但给我们提供了威力无比的计算破解能力,也让我们看到了另一种可能性:一种永无可能破解的加密方法。这是另一个炙手可热的话题:量子加密术(quantum cryptography)。如果篇幅允许,我们在史话的最后会简单描述一下这方面的情况。这种加密术之所以能够实现,是因为神奇的量子可以突破爱因斯坦的上帝所安排下的束缚——那个宿命般神秘的不等式。而这,也就是我们马上要去讨论的内容。

但是,在本节的最后,我们还是回到多宇宙解释上来。我们如何去解释量子计算机那神奇的计算能力呢?德义奇声称,唯一的可能是它利用了多个宇宙,把计算放在多个平行宇宙中同时进行,最后汇总那个结果。拿肖的算法来说,我们已经提到,当它分解一个250位数的时候,同时进行着10^500个计算。德义奇愤愤不平地请求那些不相信MWI的人解释这个事实:如果不是把计算同时放到10^500个宇宙中进行的话,它哪来的资源可以进行如此惊人的运算?他特别指出,整个宇宙也只不过包含大约10^80个粒子而已。但是,虽然把计算放在多个平行宇宙中进行是一种可能的说法(虽然听上去仍然古怪),其实MWI并不是唯一的解释。基本上,量子计算机所依赖的只是量子论的基本方程,而不是某个解释。它的模型是从数学上建筑起来的,和你如何去解释它无干。你可以把它想象成10^500个宇宙中的每一台计算机在进行着计算,但也完全可以按照哥本哈根解释,想象成未观测(输出结果)前,在这个宇宙中存在着10^500台叠加的计算机在同时干活!至于这是如何实现的,我们是没有权利去讨论的,正如我们不知道电子如何同时穿过了双缝,猫如何同时又死又活一样。这听起来不可思议,但在许多人看来,比起瞬间突然分裂出了10^500个宇宙,其古怪程度也半斤八两。正如柯文尼在《时间之箭》中说的那样,即使这样一种计算机造出来,也未必能证明多世界一定就比其它解释优越。关键是,我们还没有得到实实在在可以去判断的证据,也许我们还是应该去看看还有没有别的道路,它们都通向哪些更为奇特的方向。  



主题:上帝掷骰子吗——量子物理史话(10-4)
版权所有:castor_v_pollux 原作 提交时间:09:24:11 04月03日



第十章 不等式



我们终于可以从多世界这条道路上抽身而退,再好好反思一下量子论的意义。前面我们留下的那块“意识怪兽”的牌子还历历在目,而在多宇宙这里我们的境遇也不见得好多少,也许可以用德威特的原话,立一块“精神分裂”的牌子来警醒世人注意。在哥本哈根那里,我们时刻担心的是如何才能使波函数坍缩,而在多宇宙那里,问题变成了“我”在宇宙中究竟算是个什么东西。假如我们每时每刻都不停地被投影到无数的世界,那么究竟哪一个才算是真正的“我”呢?或者,“我”这个概念干脆就应该定义成由此刻开始,同时包含了将来那n条宇宙岔路里的所有“我”的一个集合?如果是这样的话,那么“量子永生”听起来就不那么荒诞了:在这个集合中“我”总在某条分支上活着嘛。假如你不认同,认为“我”只不过是某时某刻的一个存在,随着每一次量子测量而分裂成无数个新的不同的“我”,那么难道我们的精神只不过是一种瞬时的概念,它完全不具有连续性?生活在一个无时无刻不在分裂的宇宙中,无时无刻都有无穷个新的“我”的分身被制造出来,天知道我们为什么还会觉得时间是平滑而且连续的,天知道为什么我们的“自我意识”的连续性没有遭到割裂。

不管是哥本哈根还是多宇宙,其实都是在努力地试图解释量子世界中的这样一个奇妙性质:叠加性。正如我们已经在史话中反复为大家所揭示的那样,当没有观测前,古怪的量子精灵始终处在不确定的状态,必须描述为所有的可能性的叠加。电子既在这里又在那里,在实际观测之前并不像以前经典世界中我们不言而喻地假定的那样,有一个唯一确定的位置。当一个光子从A点运动到B点,它并不具有经典力学所默认的一条确定的轨迹。相反,它的轨迹是一团模糊,是所有可能的轨迹的总和!而且不单单是所有可能的空间轨迹,事实上,它是全部空间以及全部时间的路径的总和!换句话说,光子从A到B,是一个过去、现在、未来所有可能的路线的叠加。在此基础之上费因曼建立了他的“路径积分”(path integral)方法,用以计算量子体系在四维空间中的几率振幅。我们在史话的前面已经看到了海森堡的矩阵和薛定谔的波,费因曼的路径积分是第三种描述量子体系的手段。但同样可以证明,它和前两者是完全等价的,只不过是又一种不同的数学表达形式罢了。配合费因曼图,这种方法简单实用,而且非常巧妙。把它运用到原子体系中,我们会惊奇地发现在绝大部分路径上,作用量都互相抵消,只留下少数可能的“轨道”,而这正和观测相符!

我们必须承认,量子论在现实中是成功的,它能够完美地解释和说明观测到的现象。可是要承认叠加,不管是哥本哈根式的叠加还是多宇宙式的叠加,这和我们对于现实世界的常识始终有着巨大的冲突。我们还是不由地怀念那流金的古典时代,那时候“现实世界”仍然保留着高贵的客观性血统,它简单明确,符合常识,一个电子始终有着确定的位置和动量,不以我们的意志或者观测行为而转移,也不会莫名其妙地分裂,而只是一丝不苟地在一个优美的宇宙规则的统治下按照严格的因果律而运行。哦,这样的场景温馨而暖人心扉,简直就是物理学家们梦中的桃花源,难道我们真的无法再现这样的理想,回到那个令人怀念的时代了吗?

且慢,这里就有一条道路,打着一个大广告牌:回到经典。它甚至把爱因斯坦拉出来作为它的代言人:这条道路通向爱因斯坦的梦想。天哪,爱因斯坦的梦想,不就是那个古典客观,简洁明确,一切都由严格的因果性来主宰的世界吗?那里面既没有掷骰子的上帝,也没有多如牛毛的宇宙拷贝,这是多么教人心动的情景。我们还犹豫什么呢,赶快去看看吧!

时空倒转,我们先要回到1927年,回到布鲁塞尔的第五届索尔维会议,再回味一下那场决定了量子论兴起的大辩论。我们在史话的第八章已经描写了这次名留青史的会议的一些情景,我们还记得法国的那位贵族德布罗意在会上讲述了他的“导波”理论,但遭到了泡利的质疑。在第五届索尔维会议上,玻尔的互补原理还刚刚出台,粒子和波动还正打得不亦乐乎,德布罗意的“导波”正是试图解决这一矛盾的一个尝试。我们都还记得,德布罗意发现,每当一个粒子前进时,都伴随着一个波,这深刻地揭示了波粒二象性的难题。但德布罗意并不相信玻尔的互补原理,亦即电子同时又是粒子又是波的解释。德布罗意想象,电子始终是一个实实在在的粒子,但它的确受到时时伴随着它的那个波的影响,这个波就像盲人的导航犬,为它探测周围的道路的情况,指引它如何运动,也就是我们为什么把它称作“导波”的原因。德布罗意的理论里没有波恩统计解释的地位,它完全是确定和实在论的。量子效应表面上的随机性完全是由一些我们不可知的变量所造成的,换句话说,量子论是一个不完全的理论,它没有考虑到一些不可见的变量,所以才显得不可预测。假如把那些额外的变量考虑进去,整个系统是确定和可预测的,符合严格因果关系的。这样的理论称为“隐变量理论”(Hidden Variable Theory)。

德布罗意理论生不逢时,正遇上伟大的互补原理出台的那一刻,加上它本身的不成熟,于是遭到了众多的批评,而最终判处它死刑的是1932年的冯诺伊曼。我们也许还记得,冯诺伊曼在那一年为量子论打下了严密的数学基础,他证明了量子体系的一些奇特性质比如“无限后退”。然而在这些之外,他还顺便证明了一件事,那就是:任何隐变量理论都不可能对测量行为给出确定的预测。换句话说,隐变量理论试图把随机性从量子论中赶走的努力是不可能实现的,任何隐变量理论——不管它是什么样的——注定都要失败。

冯诺伊曼那华丽的天才倾倒每一个人,没有人对这位20世纪最伟大的数学家之一产生怀疑。隐变量理论那无助的努力似乎已经逃脱不了悲惨的下场,而爱因斯坦对于严格的因果性的信念似乎也注定要化为泡影。德布罗意接受这一现实,他在内心深处不像玻尔那样顽强而充满斗志,而是以一种贵族式的风度放弃了他的观点。整个3、40年代,哥本哈根解释一统天下,量子的不确定性精神深植在物理学的血液之中,众多的电子和光子化身为波函数神秘地在宇宙中弥漫,众星拱月般地烘托出那位伟大的智者——尼尔斯?玻尔的魔力来。

1969年诺贝尔物理奖得主盖尔曼后来调侃地说:“玻尔给整整一代的物理学家洗了脑,使他们相信,事情已经最终解决了。”

约翰?贝尔则气忿忿地说:“德布罗意在1927年就提出了他的理论。当时,以我现在看来是丢脸的一种方式,被物理学界一笑置之,因为他的论据没有被驳倒,只是被简单地践踏了。”

谁能想到,就连像冯诺伊曼这样的天才,也有阴沟里翻船的时候。他的证明不成立!冯诺伊曼关于隐函数理论无法对观测给出唯一确定的解的证明建立在5个前提假设上,在这5个假设中,前4个都是没有什么问题的,关键就在第5个那里。我们都知道,在量子力学里,对一个确定的系统进行观测,我们是无法得到一个确定的结果的,它按照随机性输出,每次的结果可能都不一样。但是我们可以按照公式计算出它的期望(平均)值。假如对于一个确定的态矢量Φ我们进行观测X,那么我们可以把它坍缩后的期望值写成<X,Φ>。正如我们一再强调的那样,量子论是线性的,它可以叠加。如果我们进行了两次观测X,Y,它们的期望值也是线性的,即应该有关系:
<X+Y,Φ>=<X,Φ>+<Y,Φ>

但是在隐函数理论中,我们认为系统光由态矢量Φ来描述是不完全的,它还具有不可见的隐藏函数,或者隐藏的态矢量H。把H考虑进去后,每次观测的结果就不再随机,而是唯一确定的。现在,冯诺伊曼假设:对于确定的系统来说,即使包含了隐函数H之后,它们也是可以叠加的。即有:
<X+Y,Φ,H>=<X,Φ,H>+<Y,Φ,H>

这里的问题大大地有。对于前一个式子来说,我们讨论的是平均情况。也就是说,假如真的有隐函数H的话,那么我们单单考虑Φ时,它其实包含了所有的H的可能分布,得到的是关于H的平均值。但把具体的H考虑进去后,我们所说的就不是平均情况了!相反,考虑了H后,按照隐函数理论的精神,就无所谓期望值,而是每次都得到唯一的确定的结果。关键是,平均值可以相加,并不代表一个个单独的情况都能够相加!

我们这样打比方:假设我们扔骰子,骰子可以掷出1-6点,那么我们每扔一个骰子,平均得到的点数是3.5。这是一个平均数,能够按线性叠加,也就是说,假如我们同时扔两粒骰子,得到的平均点数可以看成是两次扔一粒骰子所得到的平均数的和,也就是3.5+3.5=7点。再通俗一点,假设ABC三个人同时扔骰子,A一次扔两粒,B和C都一次扔一粒,那么从长远的平均情况来看,A得到的平均点数等于B和C之和。

但冯诺伊曼的假设就变味了。他其实是假定,任何一次我们同时扔两粒骰子,它必定等于两个人各扔一粒骰子的点数之和!也就是说只要三个人同时扔骰子,不管是哪一次,A得到的点数必定等于B加C。这可大大未必,当A掷出12点的时候,B和C很可能各只掷出1点。虽然从平均情况来看A的确等于B加C,但这并非意味着每回合都必须如此!

冯诺伊曼的证明建立在这样一个不牢靠的基础上,自然最终轰然崩溃。终结他的人是大卫?玻姆(David Bohm),当代最著名的量子力学专家之一。玻姆出生于宾夕法尼亚,他曾在爱因斯坦和奥本海默的手下学习(事实上,他是奥本海默在伯克利所收的最后一个研究生),爱因斯坦的理想也深深打动着玻姆,使他决意去追寻一个回到严格的因果律,恢复宇宙原有秩序的理论。1952年,玻姆复活了德布罗意的导波,成功地创立了一个完整的隐函数体系。全世界的物理学家都吃惊得说不出话来:冯诺伊曼不是已经把这种可能性彻底排除掉了吗?现在居然有人举出了一个反例!

奇怪的是,发现冯诺伊曼的错误并不需要太高的数学技巧和洞察能力,但它硬是在20年的时间里没有引起值得一提的注意。David Mermin挪揄道,真不知道它自发表以来是否有过任何专家或者学生真正研究过它。贝尔在访谈里毫不客气地说:“你可以这样引用我的话:冯诺伊曼的证明不仅是错误的,更是愚蠢的!”

看来我们在前进的路上仍然需要保持十二分的小心。


*********
饭后闲话:第五公设

冯诺伊曼栽在了他的第五个假设上,这似乎是冥冥中的天道循环,2000年前,伟大的欧几里德也曾经在他的第五个公设上小小地绊过一下。

无论怎样形容《几何原本》的伟大也不会显得过分夸张,它所奠定的公理化思想和演绎体系,直接孕育了现代科学,给它提供了最强大的力量。《几何原本》把几何学的所有命题推理都建筑在一开头给出的5个公理和5个公设上,用这些最基本的砖石建筑起了一幢高不可攀的大厦。

对于欧氏所给出的那5个公理和前4个公设(适用于几何学的他称为公设),人们都可以接受。但对于第五个公设,人们觉得有一些不太满意。这个假设原来的形式比较冗长,人们常把它改成一个等价的表述方式:“过已知直线外的一个特定的点,能够且只能够作一条直线与已知直线平行”。长期以来,人们对这个公设的正确性是不怀疑的,但觉得它似乎太复杂了,也许不应该把它当作一个公理,而能够从别的公理中把它推导出来。但2000年过去了,竟然没有一个数学家做到这一点(许多时候有人声称他证明了,但他们的证明都是错的)!

欧几里德本人显然也对这个公设感到不安,相比其他4个公设,第五公设简直复杂到家了(其他4个公设是:1,可以在任意两点间划一直线。2,可以延长一线段做一直线。3,圆心和半径决定一个圆。4,所有的直角都相等)。在《几何原本》中,他小心翼翼地尽量避免使用这一公设,直到没有办法的时候才不得不用它,比如在要证明“任意三角形的内角和为180度”的时候。

长期的失败使得人们不由地想,难道第五公设是不可证明的?如果我们用反证法,假设它不成立,那么假如我们导出矛盾,自然就可以反过来证明第五公设本身的正确性。但如果假设第五公设不成立,结果却导致不出矛盾呢?

俄国数学家罗巴切夫斯基(N. Lobatchevsky)正是这样做的。他假设第五公设不成立,也就是说,过直线外一点,可以作一条以上的直线与已知直线平行,并以此为基础进行推演。结果他得到了一系列稀奇古怪的结果,可是它们却是一个自成体系的系统,它们没有矛盾,在逻辑上是自洽的!一种不同于欧几里得的几何——非欧几何诞生了!

从不同于第五公设的其他假设出发,我们可以得到和欧几里得原来的版本稍有不同的一些定理。比如“三角形内角和等于180度”是从第五公设推出来的,假如过一点可以作一条以上的平行线,那么三角形的内角和便小于180度了。反之,要是过一点无法作已知直线的平行线,结果就是三角形的内角和大于180度。对于后者来说容易想象的就是球面,任何看上去平行的直线最终必定交汇。比方说在地球的赤道上所有的经线似乎都互相平行,但它们最终都在两极点相交。如果你在地球表面画一个三角形,它的内角和会超出180度,当然,你得画得足够大才测量得到。传说高斯曾经把三座山峰当作三角形的三个顶点来测量它们的内角和,但似乎没有发现什么,不过他要是在星系间做这样的测量,其结果就会很明显了:星系的质量造成了空间的明显弯曲。

罗巴切夫斯基假设过一点可以做一条以上的直线与已知直线平行,另一位数学家黎曼则假设无法作这样的平行线,创立了黎曼非欧几何。他把情况推广到n维中去,彻底奠定了非欧几何的基础。更重要的是,他的体系被运用到物理中去,并最终孕育了20世纪最杰出的科学巨构——广义相对论。
 楼主| 发表于 2004-4-4 13:45 | 显示全部楼层
Think Simulation
主题:上帝掷骰子吗——量子物理史话(10-5)
http://newbbs4.sina.com.cn/arts/view.cgi?forumid=166&postid=96380&kindid=0
版权所有:castor_v_pollux 原作 提交时间:10:06:08 04月04日

第十章 不等式



玻姆的隐变量理论是德布罗意导波的一个增强版,只不过他把所谓的“导波”换成了“量子势”(quantum potential)的概念。在他的描述中,电子或者光子始终是一个实实在在的粒子,不论我们是否观察它,它都具有确定的位置和动量。但是,一个电子除了具有通常的一些性质,比如电磁势之外,还具有所谓的“量子势”。这其实就是一种类似波动的东西,它按照薛定谔方程发展,在电子的周围扩散开去。但是,量子势所产生的效应和它的强度无关,而只和它的形状有关,这使它可以一直延伸到宇宙的尽头,而不发生衰减。

在玻姆理论里,我们必须把电子想象成这样一种东西:它本质上是一个经典的粒子,但以它为中心发散出一种势场,这种势弥漫在整个宇宙中,使它每时每刻都对周围的环境了如指掌。当一个电子向一个双缝进发时,它的量子势会在它到达之前便感应到双缝的存在,从而指导它按照标准的干涉模式行动。如果我们试图关闭一条狭缝,无处不在的量子势便会感应到这一变化,从而引导电子改变它的行为模式。特别地,如果你试图去测量一个电子的具体位置的话,你的测量仪器将首先与它的量子势发生作用,这将使电子本身发生微妙的变化,这种变化是不可预测的,因为主宰它们的是一些“隐变量”,你无法直接探测到它们。

玻姆用的数学手法十分高超,他的体系的确基本做到了传统的量子力学所能做到的一切!但是,让我们感到不舒服的是,这样一个隐变量理论始终似乎显得有些多余。量子力学从世纪初一路走来,诸位物理大师为它打造了金光闪闪的基本数学形式。它是如此漂亮而简洁,在实际中又是如此管用,以致于我们觉得除非绝对必要,似乎没有理由给它强迫加上笨重而丑陋的附加假设。玻姆的隐函数理论复杂繁琐又难以服众,他假设一个电子具有确定的轨迹,却又规定因为隐变量的扰动关系,我们绝对观察不到这样的轨迹!这无疑违反了奥卡姆剃刀原则:存在却绝对观测不到,这和不存在又有何分别呢?难道,我们为了这个世界的实在性,就非要放弃物理原理的优美、明晰和简洁吗?这连爱因斯坦本人都会反对,他对科学美有着比任何人都要深的向往和眷恋。事实上,爱因斯坦,甚至德布罗意生前都没有对玻姆的理论表示过积极的认同。

更不可原谅的是,玻姆在不惜一切代价地地恢复了世界的实在性和决定性之后,却放弃了另一样同等重要的东西:定域性(Locality)。定域性指的是,在某段时间里,所有的因果关系都必须维持在一个特定的区域内,而不能超越时空来瞬间地作用和传播。简单来说,就是指不能有超距作用的因果关系,任何信息都必须以光速这个上限而发送,这也就是相对论的精神!但是在玻姆那里,他的量子势可以瞬间把它的触角伸到宇宙的尽头,一旦在某地发生什么,其信息立刻便传达到每一个电子耳边。如果玻姆的理论成立的话,超光速的通讯在宇宙中简直就是无处不在,爱因斯坦不会容忍这一切的!

但是,玻姆他的确打破了因为冯诺伊曼的错误而造成的坚冰,至少给隐变量从荆棘中艰难地开辟出了一条道路。不管怎么样,隐变量理论在原则上毕竟是可能的,那么,我们是不是至少还保有一线希望,可以发展出一个完美的隐变量理论,使得我们在将来的某一天得以同时拥有一个确定、实在,而又拥有定域性的温暖世界呢?这样一个世界,不就是爱因斯坦的终极梦想吗?

1928年7月28日,距离量子论最精彩的华章——不确定性原理的谱写已经过去一年有余。在这一天,约翰&#8226;斯图尔特&#8226;贝尔(John Stewart Bell)出生在北爱尔兰的首府贝尔法斯特。小贝尔在孩提时代就表现出了过人的聪明才智,他在11岁上向母亲立志,要成为一名科学家。16岁时贝尔因为尚不够年龄入读大学,先到贝尔法斯特女王大学的实验室当了一年的实习工,然而他的才华已经深深感染了那里的教授和员工。一年后他顺理成章地进入女王大学攻读物理,虽然主修的是实验物理,但他同时也对理论物理表现出非凡的兴趣。特别是方兴未艾的量子论,它展现出的深刻的哲学内涵令贝尔相当沉迷。

贝尔在大学的时候,量子论大厦主体部分的建设已经尘埃落定,基本的理论框架已经由海森堡和薛定谔所打造完毕,而玻尔已经为它作出了哲学上最意味深长的诠释。 20世纪物理史上最激动人心的那些年代已经逝去,没能参予其间当然是一件遗憾的事,但也许正是因为这样,人们得以稍稍冷静下来,不致于为了那伟大的事业而过于热血沸腾,身不由己地便拜倒在尼尔斯&#8226;玻尔那几乎不可抗拒的个人魔力之下。贝尔不无吃惊地发现,自己并不同意老师和教科书上对于量子论的正统解释。海森堡的不确定性原理——它听上去是如此具有主观的味道,实在不讨人喜欢。贝尔想要的是一个确定的,客观的物理理论,他把自己描述为一个爱因斯坦的忠实追随者。

毕业以后,贝尔先是进入英国原子能研究所(AERE)工作,后来转去了欧洲粒子中心(CERN)。他的主要工作集中在加速器和粒子物理领域方面,但他仍然保持着对量子物理的浓厚兴趣,在业余时间里密切关注着它的发展。1952年玻姆理论问世,这使贝尔感到相当兴奋。他为隐变量理论的想法所着迷,认为它恢复了实在论和决定论,无疑迈出了通向那个终极梦想的第一步。这个终极梦想,也就是我们一直提到的,使世界重新回到客观独立,优雅确定,严格遵守因果关系的轨道上来。贝尔觉得,隐变量理论正是爱因斯坦所要求的东西,可以完成对量子力学的完备化。然而这或许是贝尔的一厢情愿,因为极为讽刺的是,甚至爱因斯坦本人都不认同玻姆!

不管怎么样,贝尔准备仔细地考察一下,对于德布罗意和玻姆的想法是否能够有实际的反驳,也就是说,是否真如他们所宣称的那样,对于所有的量子现象我们都可以抛弃不确定性,而改用某种实在论来描述。1963年,贝尔在日内瓦遇到了约克教授,两人对此进行了深入的讨论,贝尔逐渐形成了他的想法。假如我们的宇宙真的是如爱因斯坦所梦想的那样,它应当具有怎样的性质呢?要探讨这一点,我们必须重拾起爱因斯坦昔日与玻尔论战时所提到的一个思想实验——EPR佯谬。

要是你已经忘记了EPR是个什么东西,可以先复习一下我们史话的8-4。我们所描述的实际上是经过玻姆简化过的EPR版本,不过它们在本质上是一样的。现在让我们重做EPR实验:一个母粒子分裂成向相反方向飞开去的两个小粒子A和B,它们理论上具有相反的自旋方向,但在没有观察之前,照量子派的讲法,它们的自旋是处在不确定的叠加态中的,而爱因斯坦则坚持,从分离的那一刻起,A和B的状态就都是确定了的。

我们用一个矢量来表示自旋方向,现在甲乙两人站在遥远的天际两端等候着A和B的分别到来(比方说,甲在人马座的方向,乙在双子座的方向)。在某个按照宇宙标准时间所约好了的关键时刻(比方说,宇宙历767年8月12日9点整,听起来怎么像银英传,呵呵),两人同时对A和B 的自旋在同一个方向上作出测量。那么,正如我们已经讨论过的,因为要保持总体上的守恒,这两个自旋必定相反,不论在哪个方向上都是如此。假如甲在某方向上测量到A的自旋为正(+),那么同时乙在这个方向上得到的B自旋的测量结果必定为负(-)!

换句话说,A和B——不论它们相隔多么遥远 ——看起来似乎总是如同约好了那样,当A是+的时候B必定是-,它们的合作率是100%!在统计学上,拿稍微正式一点的术语来说,(A+,B-)的相关性(correlation)是100%,也就是1。我们需要熟悉一下相关性这个概念,它是表示合作程度的一个变量,假如A和B每次都合作,比如A是+时B 总是-,那么相关性就达到最大值1,反过来,假如B每次都不和A合作,每当A是+是B偏偏也非要是+,那么(A+,B-)的相关率就达到最小值-1。当然这时候从另一个角度看,(A+,B+)的相关就是1了。要是B不和A合作也不有意对抗,它的取值和A毫无关系,显得完全随机,那么B就和A并不相关,相关性是0。

在EPR里,不管两个粒子的状态在观测前究竟确不确定,最后的结果是肯定的:在同一个方向上要么是(A+,B-),要么是(A -,B+),相关性是1。但是,这是在同一方向上,假设在不同方向上呢?假设甲沿着x轴方向测量A的自旋,乙沿着y轴方向测量B,其结果的相关率会是如何呢?冥冥中一丝第六感告诉我们,决定命运的时刻就要到来了。

实际上我们生活在一个3维空间,可以在3个方向上进行观测,我们把这3个方向假设为x,y,z。它们并不一定需要互相垂直,任意地取便是。每个粒子的自旋在一个特定的方向无非是正负两种可能,那么在3个方向上无非总共是8种可能(把每个方向想像成一根爻,那么组合结果无非是8个卦)。

x y z
+ + +
+ + -
+ - +
+ - -
- + +
- + -
- - +
- - -

对于A来说有8种可能,那么对于A和B总体来说呢?显然也是8种可能,因为我们一旦观测了A,B也就确定了。如果A是(+,+,-),那么因为要守恒,B一定是(-,-,+)。现在让我们假设量子论是错误的,A和B的观测结果在分离时便一早注定,我们无法预测,只不过是不清楚其中的隐变量究竟是多少的缘故。不过没关系,我们假设这个隐变量是H,它可以取值1-8,分别对应于一种观测的可能性。再让我们假设,对应于每一种可能性,其出现的概率分别是N1, N2……一直到N8。现在我们就有了一个可能的观测结果的总表:

Ax Ay Az Bx By Bz 出现概率
+   +  +  -  -  -   N1
+   +  -  -  -  +   N2
+   -  +  -  +  -   N3
+   -  -  -  +  +   N4
-   +  +  +  -  -   N5
-   +  -  +  -  +   N6
-   -  +  +  +  -   N7
-   -  -  +  +  +   N8

上面的每一行都表示一种可能出现的结果,比如第一行就表示甲观察到A在x,y,z三个方向上的自旋都为+,而乙观察到B在3个方向上的自旋相应地均为-,这种结果出现的可能性是N1。因为观测结果8者必居其一,所以N1+N2+…+N8=1,这个各位都可以理解吧?

现在让我们运用一点小学数学的水平,来做一做相关性的练习。我们暂时只察看x方向,在这个方向上,(Ax+,Bx-)的相关性是多少呢?我们需要这样做:当一个记录符合两种情况之一:当在x方向上A为+而B同时为-,或者A不为+而B也同时不为-,如果这样,它便符合我们的要求,标志着对(Ax+,Bx-)的合作态度,于是我们就加上相应的概率。相反,如果在x上A为+而B也同时为+,或者A为-而B也为-,这是对(Ax+,Bx-)组合的一种破坏和抵触,我们必须减去相应的概率。

从上表可以看出,前4种可能都是Ax为+而Bx同时为-,后4种可能都是Ax不为+而Bx也不为-,所以8行都符合我们的条件,全是正号。我们的结果是N1+N2+…+N8=1!所以(Ax+,Bx-)的相关是1,这毫不奇怪,我们的表本来就是以此为前提编出来的。如果我们要计算(Ax+,Bx+)的相关,那么8行就全不符合条件,全是负号,我们的结果是-N1-N2-…-N8=-1。

接下来我们要走得远一点,A在x方向上为+,而B在y方向上为+,这两个观测结果的相关性是多少呢?现在是两个不同的方向,不过计算原则是一样的:要是一个记录符合Ax为+以及By为+,或者Ax不为+以及By也不为+时,我们就加上相应的概率,反之就减去。让我们仔细地考察上表,最后得到的结果应该是这样的,用 Pxy来表示:

Pxy=-N1-N2+N3+N4+N5+N6-N7-N8

嗯,蛮容易的嘛,我们再来算算Pxz,也就是Ax为+同时Bz为+的相关:

Pxz=-N1+N2-N3+N4+N5-N6+N7-N8

再来,这次是Pzy,也就是Az为+且By为+:

Pzy=-N1+N2+N3-N4-N5+N6+N7-N8

好了,差不多了,现在我们把玩一下我们的计算结果,把Pxz减去Pzy再取绝对值:

|Pxz-Pzy|=|-2N3+2N4+2N5-2N6|=2 |N3+N4-N5-N6|

这里需要各位努力一下,超越小学数学的水平,回忆一下初中的知识。关于绝对值,我们有关系式|x-y|≤|x|+|y|,所以套用到上面的式子里,我们有:

|Pxz-Pzy|=2 |N3+N4-N5-N6|≤2(|N3+N4|+|N5+N6|)

因为所有的概率都不为负数,所以2(|N3+N4|+|N5+N6|)=2(N3+N4+N5+N6)。最后,我们还记得N1+N2+...+N8=1,所以我们可以从上式中凑一个1出来:

2(N3+N4+N5+N6)=1+(-N1-N2+N3+N4+N5+N6-N7-N8)

看看我们前面的计算,后面括号里的一大串不正是Pxy吗?所以我们得到最终的结果:

|Pxz-Pzy|≤1+Pxy

恭喜你,你已经证明了这个宇宙中最为神秘和深刻的定理之一。现在放在你眼前的,就是名垂千古的“贝尔不等式”。它被人称为“科学中最深刻的发现”,它即将对我们这个宇宙的终极命运作出最后的判决。

(我们的证明当然是简化了的,隐变量不一定是离散的,而可以定义为区间λ上的一个连续函数。即使如此,只要稍懂一点积分知识也不难推出贝尔不等式来,各位有兴趣的可以动手一试。)
PZW1081057990.jpg
回复 支持 反对

使用道具 举报

发表于 2004-4-6 19:21 | 显示全部楼层
born from the simulation
主题:上帝掷骰子吗——量子物理史话(11-1)
       
版权所有:castor_v_pollux 原作 提交时间:02:56:01 04月05日

第十一章 上帝的判决



|Pxz-Pzy|≤1+Pxy

嗯,这个不等式看上去普普通通,似乎不见得有什么神奇的魔力,更不用说对于我们宇宙的本质作出终极的裁决。它真的有这样的威力吗?

我们还是先来看看,贝尔不等式究竟意味着什么。我们在上一章已经描述过了,Pxy代表了A粒子在x方向上为+,而同时B粒子在y方向上亦为+这两个事件的相关性。相关性是一种合作程度的体现(不管是双方出奇地一致还是出奇地不一致都意味着合作程度很高),而合作则需要双方都了解对方的情况,这样才能够有效地协调。在隐变量理论中,我们对于两个粒子的描述是符合常识的:无论观察与否,两个粒子始终存在于客观现实之内,它们的状态从分裂的一霎那起就都是确定无疑的。假如我们禁止宇宙中有超越光速的信号传播,那么理论上当我们同时观察两个粒子的时候,它们之间无法交换任何信息,它们所能达到的最大协作程度仅仅限于经典世界所给出的极限。这个极限,也就是我们用经典方法推导出来的贝尔不等式。

如果世界的本质是经典的,具体地说,如果我们的世界同时满足:1.定域的,也就是没有超光速信号的传播。2.实在的,也就是说,存在着一个独立于我们观察的外部世界。那么我们任意取3个方向观测A和B的自旋,它们所表现出来的协作程度必定要受限贝尔不等式之内。也就是说,假如上帝是爱因斯坦所想象的那个不掷骰子的慈祥的“老头子”,那么贝尔不等式就是他给这个宇宙所定下的神圣的束缚。不管我们的观测方向是怎么取的,在EPR实验中的两个粒子决不可能冒犯他老人家的尊严,而胆敢突破这一禁区。事实上,这不是敢不敢的问题,而是两个经典粒子在逻辑上根本不具有这样的能力:它们之间既然无法交换信号,就决不能表现得亲密无间。

但是,量子论的预言就不同了!贝尔证明,在量子论中,只要我们把a和b之间的夹角θ取得足够小,则贝尔不等式是可以被突破的!具体的证明需要用到略微复杂一点的物理和数学知识,我在这里略过不谈了,但请诸位相信我,在一个量子主宰的世界里,A和B两粒子在相隔非常遥远的情况下,在不同方向上仍然可以表现出很高的协作程度,以致于贝尔不等式不成立。这在经典图景中是决不可能发生的。

我们这样来想象EPR实验:有两个罪犯抢劫了银行之后从犯罪现场飞也似地逃命,但他们慌不择路,两个人沿着相反的两个方向逃跑,结果于同一时刻在马路的两头被守候的警察分别抓获。现在我们来录取他们的口供,假设警察甲问罪犯A:“你是带头的那个吗?”A的回答无非是“是”,或者“不是”。在马路另一头,如果警察乙问罪犯B同一个问题:“你是带头的那个吗?”那么B的回答必定与A相反,因为大哥只能有1个,不是A带着B就是B带着A。两个警察问的问题在“同一方向”上,知道了A的答案,就等于知道了B的答案,他们的答案,100%地不同,协作率100%。在这点上,无论是经典世界还是量子世界都是一样的。

但是,回到经典世界里,假如两个警察问的是不同角度的问题,比如说问 A:“你需要自己聘请律师吗?”问B:“你现在要喝水吗?”这是两个彼此无关的问题(在不同的方向上),A可能回答“要”或者“不要”,但这应该对B怎样回答问题毫无关系,因为B和A理论上已经失去了联系,B不可能按照A的行动来斟酌自己的答案。

不过,这只是经典世界里的罪犯,要是我们有两个“量子罪犯”,那可就不同了。当A决定聘请律师的时候,B就会有更大的可能性想要喝水,反之亦然!看起来,似乎是A和B之间有一种神奇的心灵感应,使得他们即使面临不同的质询时,仍然回答得出奇地一致!量子世界的Bonnie&Clyde,即使他们相隔万里,仍然合作无间,按照哥本哈根解释,这是因为在具体地回答问题前,两个人根本不存在于“实在”之中,而是合为一体,按照波函数弥漫。用薛定谔发明的术语来说,在观测之前,两个人(粒子)处在一种“纠缠”(entanglement)的状态,他们是一个整体,具有一种“不可分离性”(inseparability)!

这样说当然是简单化的,具体的条件还是我们的贝尔不等式。总而言之,如果世界是经典的,那么在EPR中贝尔不等式就必须得到满足,反之则可以突破。我们手中的这个神秘的不等式成了判定宇宙最基本性质的试金石,它仿佛就是那把开启奥秘之门的钥匙,可以带领我们领悟到自然的终极奥义。

而最叫人激动的是,和胡思乱想的一些实验(比如说疯狂的量子自杀)不同,EPR不管是在技术或是伦理上都不是不可实现的!我们可以确实地去做一些实验,来看看我们生活其中的世界究竟是如爱因斯坦所祈祷的那样,是定域实在的,还是它的神奇终究超越我们的想象,让我们这些凡人不得不怀着更为敬畏的心情去继续探索它那深深隐藏的秘密。

196 4年,贝尔把他的不等式发表在一份名为《物理》(Physics)的杂志的创刊号上,题为《论EPR佯谬》(On the Einstein-Podolsky-Rosen Paradox)。这篇论文是20世纪物理史上的名篇,它的论证和推导如此简单明晰却又深得精髓,教人拍案叫绝。1973年诺贝尔物理奖得主约瑟夫森(Brian D. Josephson)把贝尔不等式称为“物理学中最重要的新进展”,斯塔普(Henry Stapp,就是我们前面提到的,鼓吹精神使波函数坍缩的那个)则把它称作“科学中最深刻的发现”(the most profound discovery in science)。

不过,《物理》杂志却没有因为发表了这篇光辉灿烂的论文而得到什么好运气,这份期刊只发行了一年就倒闭了。如今想要寻找贝尔的原始论文,最好还是翻阅他的著作《量子力学中的可道与不可道》(Speakable and Unspeakable in Quantum Mechanics, Cambridge 1987)。

在这之前,贝尔发现了冯诺伊曼的错误,并给《现代物理评论》(Reviews of Modern Physics)杂志写了文章。虽然因为种种原因,此文直到1966年才被发表出来,但无论如何已经改变了这样一个尴尬的局面,即一边有冯诺伊曼关于隐函数理论不可能的“证明”,另一边却的确存在着玻姆的量子势!冯诺伊曼的封咒如今被摧毁了。

现在,贝尔显得踌躇满志:通往爱因斯坦梦想的一切障碍都已经给他扫清了,冯诺伊曼已经不再挡道,玻姆已经迈出了第一步。而他,已经打造出了足够致量子论以死命的武器,也就是那个威力无边的不等式。贝尔对世界的实在性深信不已,大自然不可能是依赖于我们的观察而存在的,这还用说吗?现在,似乎只要安排一个EPR式的实验,用无可辩驳的证据告诉世人:无论在任何情况下,贝尔不等式也是成立的。粒子之间心灵感应式的合作是纯粹的胡说八道,可笑的妄想,量子论已经把我们的思维搞得混乱不堪,是时候回到正常状况来了。量子不确定性……嗯,是一个漂亮的作品,一种不错的尝试,值得在物理史上获得它应有的地位,毕竟它管用。但是,它不可能是真实,而只是一种近似!更为可靠,更为接近真理的一定是一种传统的隐变量理论,它就像相对论那样让人觉得安全,没有骰子乱飞,没有奇妙的多宇宙,没有超光速的信号。是的,只有这样才能恢复物理学的光荣,那个值得我们骄傲和炫耀的物理学,那个真正的,庄严的宇宙的立法者,而不是靠运气和随机性来主宰一切的投机贩子。

真的,也许只差那么小小的一步,我们就可以回到旧日的光辉中去了。那个从海森堡以来失落已久的极乐世界,那个宇宙万物都严格而丝丝入扣地有序运转的伟大图景,叫怀旧的人们痴痴想念的古典时代。真的,大概就差一步了,也许,很快我们就可以在管风琴的伴奏中吟唱弥尔顿那神圣而不朽的句子:

昔有乐土,岁月其徂。
有子不忠,天赫斯怒。
彷徨放逐,维罪之故。
一人皈依,众人得赎。
今我来思,咏彼之复。
此心坚忍,无入邪途。
孽愆尽洗,重归正路。
瞻彼伊甸,崛起荒芜。
(《复乐园》卷一,1-7)

只是贝尔似乎忘了一件事:威力强大的武器往往都是双刃剑。


*********
饭后闲话:玻姆和麦卡锡时代

玻姆是美国科学家,但他的最大贡献却是在英国作出的,这还要归功于40年代末50年代初在美国兴起的麦卡锡主义(McCarthyism)。

麦卡锡主义是冷战的产物,其实质就是疯狂地反 共与排外。在参议员麦卡锡(Joseph McCarthy)的煽风点火下,这股“红色恐惧”之风到达了最高潮。几乎每个人都被怀疑是苏联间 谍,或者是阴 谋推翻政府的敌对分子。玻姆在二战期间曾一度参予曼哈顿计划,但他没干什么实质的工作,很快就退出了。战后他到普林斯顿教书,和爱因斯坦一起工作,这时他遭到臭名昭著的“非美活动调查委员会”(Un-American Activities Committee)的传唤,要求他对一些当年同在伯克利的同事的政治立场进行作证,玻姆愤然拒绝,并引用宪法第五修正案为自己辩护。

本来这件事也就过去了,但麦卡锡时代刚刚开始,恐慌迅即蔓延整个美国。两年后,玻姆因为拒绝回答委员会的提问而遭到审判,虽然他被宣判无罪,但是普林斯顿却不肯为他续签合同,哪怕爱因斯坦请求他作为助手留下也无济于事。玻姆终于离开美国,他先后去了巴西和以色列,最后在伦敦大学的Birkbeck学院安顿下来。在那里他发展出了他的隐函数理论。

麦卡锡时代是一个疯狂和耻辱的时代,2000多万人接受了所谓的“忠诚审查”。上至乔治??马歇尔将军,中至查理??卓别林,下至无数平民百姓都受到巨大的冲击。人们神经质地寻找所谓共产主义者,就像中世纪的欧洲疯狂地抓女巫一样。在学界,近百名教授因为“观点”问题离开了岗位,有华裔背景的如钱学森等遭到审查,著名的量子化学大师鲍林被怀疑是美共 特务。越来越多的人被传唤去为同事的政治立场作证,这里面芸芸众生象,有如同玻姆一般断然拒绝的,也有些人的举动出乎意料。最著名的可能就算是奥本海默一案了,奥本海默是曼哈顿计划的领导人,连他都被怀疑对国家“不忠诚”似乎匪夷所思。所有的物理学家都站在他这一边,然而爱德华??泰勒(Edward Teller)让整个物理界几乎不敢相信自己的耳朵。这位匈牙利出生的物理学家(他还是杨振宁的导师)说,虽然他不怎么觉得奥本海默会做出不利于国家的事情来,但是“如果让公共事务掌握在别人的手上,我个人会感觉更安全些的。”奥本海默的忠诚虽然最后没有被责难,但他的安全许可证被没收了,绝密材料不再送到他手上。虽然有人(如惠勒)对泰勒表示同情,但整个科学界几乎不曾原谅过他。

泰勒还是氢弹的大力鼓吹者和实际设计者之一(他被称为“氢弹之父”),他试图阻止《禁止地上核试验条约》的签署,他还向里根兜售了“星球大战”计划(SDI Defence)。他去年(2003年)9月去世了,享年95岁。卡尔??萨根在《魔鬼出没的世界》一书里,曾把他拉出来作为科学家应当为自己的观点负责的典型例子。

泰勒自己当然有自己的理由,他认为氢弹的制造实际上使得人类社会“更安全”。作为我们来说,也许只能衷心地希望科学本身不要受到政 治的过多干涉,虽然这也许只是一个乌托邦式的梦想,但我们仍然如此祝愿。


主题:上帝掷骰子吗——量子物理史话(11-2)
       
版权所有:castor_v_pollux 原作 提交时间:19:47:16 04月05日

第十一章 上帝的判决



玻尔还是爱因斯坦?那就是个问题。

物理学家们终于行动起来,准备以实践为检验真理的唯一标准,确确实实地探求一下,究竟世界符合两位科学巨人中哪一位的描述。玻尔和爱因斯坦的争论本来也只像是哲学上的一种空谈,泡利有一次对波恩说,和爱因斯坦争论量子论的本质就像以前人们争论一个针尖上能坐多少个天使一般虚无飘渺,但现在已经不同,我们的手里现在有了贝尔不等式。两个粒子究竟是乖乖地臣服于经典上帝的这条神圣禁令,还是它们将以一种量子革命式的躁动蔑视任何桎梏,突破这条看起来庄严而不可侵犯的规则?如今我们终于可以把它付诸实践,一切都等待着命运之神最终的判决。

1969年,Clauser等人改进了玻姆的EPR模型,使其更容易实施。随即人们在伯克利,哈佛和德州进行了一系列初步的实验,也许出乎贝尔的意料之外,除了一个实验外,所有的实验都模糊地指向量子论的预言结果。但是,最初的实验都是不严密的,和EPR的原型相去甚远,人们使原子辐射出的光子对通过偏振器,但技术的限制使得在所有的情况下,我们只能获得单一的+的结果,而不是+和-,所以要获得EPR的原始推论仍然要靠间接推理。而且当时使用的光源往往只能产生弱信号。

随着技术的进步,特别是激光技术的进步,更为精确严密的实验有了可能。进入80年代,法国奥赛理论与应用光学研究所(Institut d’Optique Théorique et Appliquée, Orsay Cédex)里的一群科学家准备第一次在精确的意义上对EPR作出检验,领导这个小组的是阿莱恩??阿斯派克特(Alain Aspect)。

法国人用钙原子作为光子对的来源,他们把钙原子激发到一个很高的量子态,当它落回到未激发态时,就释放出能量,也就是一对对光子。实际使用的是一束钙原子,但是可以用激光来聚焦,使它们精确地激发,这样就产生了一个强信号源。阿斯派克特等人使两个光子飞出相隔约12米远,这样即使信号以光速在它们之间传播,也要花上40纳秒(ns)的时间。光子经过一道闸门进入一对偏振器,但这个闸门也可以改变方向,引导它们去向两个不同偏振方向的偏振器。如果两个偏振器的方向是相同的,那么要么两个光子都通过,要么都不通过,如果方向不同,那么理论上说(按照爱因斯坦的世界观),其相关性必须符合贝尔不等式。为了确保两个光子之间完全没有信息的交流,科学家们急速地转换闸门的位置,平均10ns就改变一次方向,这比双方之间光速来往的时间都要短许多,光子不可能知道对方是否通过了那里的偏振器。 作为对比,我们也考察两边都不放偏振器,以及只有一边放置偏振器的情况,以消除实验中的系统误差。

那么,现在要做的事情,就是记录两个光子实际的协作程度。如果它符合贝尔不等式,则爱因斯坦的信念就得到了救赎,世界回复到独立可靠,客观实在的地位上来。反之,则我们仍然必须认真地对待玻尔那看上去似乎神秘莫测的量子观念。

时间是1982年,暮夏和初秋之交。七月流火,九月授衣,在时尚之都巴黎,人们似乎已经在忙着揣摩今年的秋冬季将会流行什么样式的时装。在酒吧里,体育迷们还在为国家队魂断西班牙世界杯而扼腕不已。那一年,在普拉蒂尼率领下的,被认为是历史上最强的那届国家队在一场经典赛事中惊心动魄地击败了巴西,却终于在点球上败给了西德人。高贵的绅士们在沙龙里畅谈天下大势,议论着老冤家英国人是如何在马岛把阿根廷摆布得服服帖帖。在卢浮宫和奥赛博物馆,一如既往地挤满了来自世界各地的艺术爱好者,塞纳河缓缓流过市中心,倒映着艾菲尔铁塔和巴黎圣母院的影子,也倒映出路边风琴手们的清澈眼神。

只是,有多少人知道,在不远处的奥赛光学研究所,一对对奇妙的光子正从钙原子中被激发出来,冲向那些命运交关的偏振器;我们的世界,正在接受一场终极的考验,向我们揭开她那隐藏在神秘面纱后面的真实面目呢?

如果爱因斯坦和玻尔神灵不昧,或许他们也在天国中注视着这次实验的结果吧?要是真的有上帝的话,他老人家又在干什么呢?也许,连他也不得不把这一切交给命运来安排,用一个黄金的天平和两个代表命运的砝码来决定这个世界本性的归属,就如同当年阿喀琉斯和赫克托耳在特洛伊城下那场传奇的决斗。

一对,两对,三对……数据逐渐积累起来了。1万2千秒,也就是3个多小时后,结果出来了。科学家们都长出了一口气。

爱因斯坦输了!实验结果和量子论的预言完全符合,而相对爱因斯坦的预测却偏离了5个标准方差——这已经足够决定一切。贝尔不等式这把双刃剑的确威力强大,但它斩断的却不是量子论的辉光,而是反过来击碎了爱因斯坦所执着信守的那个梦想!

阿斯派克特等人的报告于当年12月发表在《物理评论快报》(Physics Review Letters)上,科学界最初的反应出奇地沉默。大家都知道这个结果的重要意义,然而似乎都不知道该说什么才好。

爱因斯坦输了?这意味着什么?难道这个世界真的比我们所能想象的更为神秘和奇妙,以致于我们那可怜的常识终于要在它的面前破碎得七零八落?这个世界不依赖于你也不依赖于我,它就是“在那里存在着”,这不是明摆着的事情吗?为什么站在这样一个基本假设上所推导出来的结论和实验结果之间有着无法弥补的鸿沟?是上帝疯了,还是你我疯了?

全世界的人们都试图重复阿斯派克特的实验,而且新的手段也开始不断地被引入,实验模型越来越靠近爱因斯坦当年那个最原始的EPR设想。马里兰和罗切斯特的科学家们使用了紫外光,以研究观测所得到的连续的,而非离散的输出相关性。在英国的Malvern,人们用光纤引导两个纠缠的光子,使它们分离4公里以上,而在日内瓦,这一距离达到了数十公里。即使在这样的距离上,贝尔不等式仍然遭到无情的突破。

另外,按照贝尔原来的设想,我们应该不让光子对“事先知道”观测方向是哪些,也就是说,为了确保它们能够对对它们而言不可预测的事件进行某种似乎不可思议的超距的合作(按照量子力学的预测),我们应该在它们飞行的路上才作出随机的观测方向的安排。在阿斯派克特实验里,我们看到他们以10ns的速度来转换闸门,然而他们所能够使两光子分离的距离12米还是显得太短,不太保险。1998年,奥地利因斯布鲁克(Innsbruck)大学的科学家们让光子飞出相距 400米,这样他们就有了1.3微秒的时间来完成偏振器的随机安排。这次时间上绰绰有余,其结果是如此地不容置疑:爱因斯坦这次输得更惨——30个标准方差!

1990年,Greenberger,Horne和Zeilinger等人向人们展示了,就算不用到贝尔不等式,我们也有更好的方法来昭显量子力学和一个“经典理论”(定域的隐变量理论)之间的尖锐冲突,这就是著名的GHZ测试(以三人名字的首字母命名),它牵涉到三个或更多光子的纠缠。2000年,潘建伟、Bouwmeester、Daniell等人在Nature杂志上报道,他们的实验结果再次否决了定域实在,也就是爱因斯坦信念的可能性——8个标准方差!

2001年,Rowe等人描述了更加精密的Be+离子捕获实验。2003年,Pittman和Franson报道了产生于两个独立源的光子对于贝尔不等式的违反;而Hasegawa等人更是在单中子的干涉测量中发现了突破类贝尔关系的结果。

在世界各地的实验室里,粒子们都顽强地保持着一种微妙而神奇的联系。仿佛存心要炫耀它们的能力般地,它们一再地嘲笑经典世界给它们定下的所谓不可突破的束缚,一次又一次把那个被宣称是不可侵犯的教条踩在脚下。这一现象变得如此地不容置疑,在量子信息领域已经变成了测试两个量子比特是否仍然处在纠缠状态的一种常规方法(有一个好处是可以知道你的信息有否被人中途窃听!)。

尽管我们也许会在将来做出更多更精密的实验,但总体来看,在EPR中贝尔不等式的突破是一个无可辩驳的事实。或许在未来,新的实验会把我们目前的结论全部推翻,让世界恢复到经典的面目中去,但从目前来看,这种可能性是微乎其微的。

不知道爱因斯坦如果活到今天,他会对此发表什么样的看法?也许他会说一些灵活的话。我们似乎听到在遥远的天国,他和玻尔仍在重复那段经典的对白:

爱因斯坦:玻尔,亲爱的上帝不掷骰子!
玻尔:爱因斯坦,别去指挥上帝应该怎么做!

现在,就让我们狂妄一回,以一种尼采式的姿态来宣布:

爱因斯坦的上帝已经死了。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2004-4-8 22:40 | 显示全部楼层
born from the simulation
主题:上帝掷骰子吗——量子物理史话(11-3)
       
版权所有:castor_v_pollux 原作 提交时间:20:26:25 04月07日

第十一章 上帝的判决



阿斯派克特在1982年的实验(准确地说,一系列实验)是20世纪物理史上影响最为深远的实验之一,它的意义甚至可以和1886年的迈克尔逊-莫雷实验相提并论。但是,相比迈克尔逊的那个让所有的人都瞠目结舌的实验来说,阿斯派克特所得到的结果却在“意料之中”。大多数人们一早便预计到,量子论的胜利是不在话下的。量子论自1927年创立以来,到那时为止已经经历了50多年的风风雨雨,它在每一个领域都显示出了如此强大的力量,没有任何实验结果能够对它提出哪怕一点点的质疑。最伟大的物理学家(如爱因斯坦和薛定谔)向它猛烈开火,试图把它从根本上颠覆掉,可是它的灿烂光辉却反而显得更加耀眼和悦目。从实用的角度来说,量子论是有史以来最成功的理论,它不但远超相对论和麦克斯韦电磁理论,甚至超越了牛顿的经典力学!量子论是从风雨飘摇的乱世成长起来的,久经革命考验的战士,它的气质在风刀霜剑的严相逼拷之下被磨砺得更加坚韧而不可战胜。的确,没有多少人会想象,这样一个理论会被一个不起眼的实验轻易地打倒在地,从此翻不了身。阿斯派克特实验的成功,只不过是量子论所经受的又一个考验(虽然是最严格的考验),给它那身已经品尝过无数胜利的戎装上又添上一枚荣耀的勋章罢了。现在我们知道,它即使在如此苛刻的条件下,也仍然是成功的。是的,不出所料!这一消息并没有给人们的情感上带来巨大的冲击,引起一种轰动效应。

但是,它的确把物理学家们逼到了一种尴尬的地步。本来,人们在世界究竟是否实实在在这种问题上通常乐于奉行一种鸵鸟政策,能闭口不谈的就尽量不去讨论。量子论只要管用就可以了嘛,干吗非要刨根问底地去追究它背后的哲学意义到底是什么样的呢?虽然有爱因斯坦之类的人在为它担忧,但大部分科学家还是觉得无所谓的。不过现在,阿斯派克特终于逼着人们要摊牌了:一味地缩头缩脑是没用的,人们必须面对这样一个事实:实验否决了经典图景的可能性!

爱因斯坦的梦想如同泡沫般破碎在无情的数据面前,我们再也回不去那个温暖舒适的安乐窝中,而必须面对风雨交加的严酷现实。我们必须再一次审视我们的常识,追问一下它到底有多可靠,在多大程度上会给我们带来误导。对于贝尔来说,他所发现的不等式却最终背叛了他的理想,不仅没有把世界拉回经典图像中来,更反过来把它推向了绝路。阿斯派克特实验之后,我们必须说服自己相信这样一件事情:

定域的隐变量理论是不存在的!

换句话说,我们的世界不可能如同爱因斯坦所梦想的那样,既是定域的(没有超光速信号的传播),又是实在的(存在一个客观独立的世界,可以为隐变量所确定地描述)。定域实在性(local realism)从我们的宇宙中被实验排除了出去,现在我们必须作出艰难的选择:要么放弃定域性,要么放弃实在性。

如果我们放弃实在性,那就回到量子论的老路上来,承认在我们观测之前,两个粒子不存在于“客观实在”之内。它们不具有通常意义上的物理属性(如自旋),只有当观测了以后,这种属性才变得有意义。在EPR实验中,不到最后关头,我们的两个处于纠缠态粒子都必须被看成一个不可分割的整体,那时在现实中只有“一个粒子”(当然是叠加着的),而没有“两个粒子”。所谓两个粒子,只有当观测后才成为实实在在的东西(波函数坍缩了)。当然,在做出了这样一个令人痛心的让步后,我们还是可以按照自己的口味不同来选择:究竟是更进一步,彻底打垮决定论,也就是保留哥本哈根解释;还是在一个高层次的角度上,保留决定论,也即采纳多宇宙解释!需要说明的是,MWI究竟算不算一个定域的(local)理论,各人之间的说法还是不尽相同的。除去Stapp这样的反对者不谈,甚至在它的支持者(比如Deutsch,Tegmark或者Zeh)中,其口径也不是统一的。不过这也许只是一个定义和用词的问题,因为量子纠缠本身或许就可以定义为某种非定域的物理过程(Zeh,Found. of Physics Letters 13,2000,p22),但大家都同意,MWI肯定不是一个定域实在的理论,而且超光速的信号传递在其内部也是不存在的。关键在于,根据MWI,每次我们进行观测都在“现实”中产生了不止一个结果(事实上,是所有可能的结果)!这和爱因斯坦所默认的那个传统的“现实”是很不一样的。

这样一来,那个在心理上让人觉得牢固可靠的世界就崩塌了(或者,“坍缩”了?)。不管上帝掷不掷骰子,他给我们建造的都不是一幢在一个绝对的外部世界严格独立的大厦。它的每一面墙壁,每一块地板,每一道楼梯……都和在其内部进行的种种活动密切相关,不管这种活动是不是包含了有智能(意识)的观测者。这幢大楼非但不是铁板一块,相反,它的每一层楼都以某种特定的奇妙方式纠缠在一起,以致于分居在顶楼和底楼的住客仍然保持着一种心有灵犀的感应。

但是,如果你忍受不了这一切,我们也可以走另一条路,那就是说,不惜任何代价,先保住世界的实在性再说。当然,这样一来就必须放弃定域性。我们仍然有可能建立一个隐变量理论,如果容忍某种超光速的信号在其体系中来回,则它还是可以很好地说明我们观测到的一切。比如在EPR中,天际两头的两个电子仍然可以通过一种超光速的瞬时通信来确保它们之间进行成功的合作。事实上,玻姆的体系就很好地在阿斯派克特实验之后仍然存活着,因为他的“量子势”的确暗含着这样的超距作用。

可是要是这样的话,我们也许并不会觉得日子好过多少!超光速的信号?老大,那意味着什么?想一想爱因斯坦对此会怎么说吧,超光速意味着获得了回到过去的能力!这样一来,我们将陷入甚至比不确定更加棘手和叫人迷惑的困境,比如,想象那些科幻小说中著名的场景:你回到过去杀死了尚处在襁褓中的你,那会产生什么样的逻辑后果呢?虽然玻姆也许可以用高超的数学手段向我们展示,尽管存在着这种所谓超光速的非定域关联,他的隐函数理论仍然可以禁止我们在实际中做到这样的信号传递:因为大致上来说,我们无法做到精确地“控制”量子现象,所以在现实的实验中,我们将在统计的意义上得到和相对论的预言相一致的观测极限。也就是说,虽然在一个深层次的意义上存在着超光速的信号,但我们却无法刻意与有效地去利用它们来制造逻辑怪圈。不过无论如何,对于这种敏感问题,我们应当非常小心才是。放弃定域性,并不比放弃实在性来得让我们舒服!

阿斯派克特实验结果出来之后,BBC的广播制作人朱里安&#8226;布朗(Julian Brown)和纽卡斯尔大学的物理学教授保罗&#8226;戴维斯(Paul Davies,他如今在澳大利亚的Macquarie大学,他同时也是当代最负盛名的科普作家之一)决定调查一下科学界对这个重要的实验究竟会做出什么样的反应。他们邀请8位在量子论领域最有名望的专家作了访谈,征求对方对于量子力学和阿斯派克特实验的看法。这些访谈记录最后被汇集起来,编成一本书,于 1986年由剑桥出版社出版,书名叫做《原子中的幽灵》(The Ghost in the Atom)。

阅读这些访谈记录真是给人一种异常奇妙的体验和感受。你会看到最杰出的专家们是如何各持己见,在同一个问题上抱有极为不同,甚至截然对立的看法。阿斯派克特本人肯定地说,他的实验从根本上排除了定域实在的可能,他不太欣赏超光速的说法,而是对现有的量子力学表示了同情。贝尔虽然承认实验结果并没有出乎意料,但他仍然决不接受掷骰子的上帝。他依然坚定地相信,量子论是一种权益之计,他想象量子论终究会在有一天被更为复杂的实验证明是错误的。贝尔愿意以抛弃定域性为代价来换取客观实在,他甚至设想复活“以太”的概念来达到这一点。惠勒的观点有点暧昧,他承认一度支持埃弗莱特的多宇宙解释,但接着又说因为它所带来的形而上学的累赘,他已经改变了观点。惠勒讨论了玻尔的图像,意识参予的可能性以及他自己的延迟实验和参予性宇宙,他仍然对于精神在其中的作用表现得饶有兴趣。

鲁道夫&#8226;佩尔斯(Rudolf Peierls)的态度简明爽快:“我首先反对使用‘哥本哈根解释’这个词。”他说,“因为,这听上去像是说量子力学有好几种可能的解释一样。其实只存在一种解释:只有一种你能够理解量子力学的方法(也就是哥本哈根的观点!)。”这位曾经在海森堡和泡利手下学习过的物理学家仍然流连于革命时代那波澜壮阔的观念,把波函数的坍缩认为是一种唯一合理的物理解释。大卫&#8226;德义奇也毫不含糊地向人们推销多宇宙的观点,他针对奥卡姆剃刀对于“无法沟通的宇宙的存在”提出的诘问时说,MWI是最为简单的解释。相对于种种比如“意识”这样稀奇古怪的概念来说,多宇宙的假设实际上是最廉价的!他甚至描述了一种“超脑”实验,认为可以让一个人实际地感受到多宇宙的存在!接下来是玻姆,他坦然地准备接受放弃物理中的定域性,而继续维持实在性。“对于爱因斯坦来说,确实有许多事情按照他所预料的方式发生。”玻姆说,“但是,他不可能在每一件事情上都是正确的!”在玻姆看来,狭义相对论也许可以看成是一种普遍情况的一种近似,正如牛顿力学是相对论在低速情况下的一种近似那样。作为玻姆的合作者之一,巴西尔&#8226;海利(Basil Hiley)也强调了隐函数理论的作用。而约翰&#8226;惠勒(John Taylor)则描述了另一种完全不同的解释,也就是所谓的“系综”解释(the ensemble interpretation)。系综解释持有的是一种非常特别的统计式的观点,也就是说,物理量只对于平均状况才有意义,对于单个电子来说,是没有意义的,它无法定义!我们无法回答单个系统,比如一个电子通过了哪条缝这样的问题,而只能给出一个平均统计!我们在史话的后面再来详细地介绍系综解释。

在这样一种大杂烩式的争论中,阿斯派克特实验似乎给我们的未来蒙上了一层更加扑朔迷离的影子。爱因斯坦有一次说:“虽然上帝神秘莫测,但他却没有恶意。”但这样一位慈祥的上帝似乎已经离我们远去了,留给我们一个难以理解的奇怪世界,以及无穷无尽的争吵。我们在隐函数这条道路上的探索也快接近尽头了,关于玻姆的理论,也许仍然有许多人对它表示足够的同情,比如John Gribbin在他的名作《寻找薛定谔的猫》(In Search of Schrodinger’s Cat)中还把自己描述成一个多宇宙的支持者,而在10年后的《薛定谔的猫以及对现实的寻求》(Schrodinger’s Kittens and the Search for Reality)一书中,他对MWI的热情已经减退,而对玻姆理论表示出了谨慎的乐观。我们不清楚,也许玻姆理论是对的,但我们并没有足够可靠的证据来说服我们自己相信这一点。除了玻姆的隐函数理论之外,还有另一种隐函数理论,它由Edward Nelson所发明,大致来说,它认为粒子按照某种特定的规则在空间中实际地弥漫开去(有点像薛定谔的观点),类似波一般地确定地发展。我们不打算过多地深入探讨这些观点,我们所不满的是,这些和爱因斯坦的理想相去甚远!为了保有实在性而放弃掉定域性,也许是一件饮鸩止渴的事情。我们不敢说光速绝对地不可超越,只是要推翻相对论,现在似乎还不大是时候,毕竟相对论也是一个经得起考验的伟大理论。

我们沿着这条路走来,但是它当初许诺给我们的那个美好蓝图,那个爱因斯坦式的理想却在实验的打击下终于破产。也许我们至少还保有实在性,但这不足以吸引我们中的许多人,让他们付出更多的努力和代价而继续前进。阿斯派克特实验严酷地将我们的憧憬粉碎,它并没有证明量子论是对的(它只是支持了量子论的预言,正如我们讨论过的那样,没什么理论可以被“证明”是对的),但它无疑证明了爱因斯坦的世界观是错的!事实上,无论量子论是错是对,我们都已经不可能追回传说中的那个定域实在的理想国,而这,也使我们丧失了沿着该方向继续前进的很大一部分动力。就让那些孜孜不倦的探索者继续前进,而我们还是退回到原来的地方,再继续苦苦追寻,看看有没有柳暗花明的一天。

*********
饭后闲话:超光速

EPR背后是不是真的隐藏着超光速我们仍然不能确定,至少它表面上看起来似乎是一种类似的效应。不过,我们并不能利用它实际地传送信息,这和爱因斯坦的狭义相对论并非矛盾。

假如有人想利用这种量子纠缠效应,试图以超光速从地球传送某个消息去到半人马座α星(南门二,它的一颗伴星是离我们地球最近的恒星,也即比邻星),他是注定要失败的。假设某个未来时代,某个野心家驾驶一艘宇宙飞船来到两地连线的中点上,然后使一个粒子分裂,两个子粒子分别飞向两个目标。他事先约定,假如半人马星上观测到粒子是“左旋”,则表示地球上政变成功,反之,如是“右旋”则表示失败。这样的通讯建立在量子论的这个预测上:也就是地球上观测到的粒子的状态会“瞬间”影响到遥远的半人马星上另一个粒子的状态。但事到临头他却犯难了:假设他成功了,他如何确保他在地球上一定观测到一个“右旋”粒子,以保证半人马那边收到“左旋”的信息呢?他没法做到这点,因为观测结果是不确定的,他没法控制!他最多说,当他做出一个随机的观测,发现地球上的粒子是“右旋”的时候,那时他可以有把握地,100%地预言遥远的半人马那里一定收到“左”的信号,虽然理论上说两地相隔非常遥远,讯息还来不及传递过来。如果他想利用贝尔不等式,他也必须知道,在那一边采用了什么观测手段,而这必须通过通常的方法来获取。这一切都并不违反相对论,你无法利用这种“超光速”制造出信息在逻辑上的自我矛盾来(例如回到过去杀死你自己之类的)。

在这种原理上的量子传输(teleportation)事实上已经实现。我国的潘建伟教授在此领域多有建树。

2000 年,王力军,Kuzmich等人在Nature上报道了另一种“超光速”(Nature V406),它牵涉到在特定介质中使得光脉冲的群速度超过真空中的光速,这本身也并不违反相对论,也就是说,它并不违反严格的因果律,结果无法“回到过去”去影响原因。同样,它也无法携带实际的信息。

其实我们的史话一早已经讨论过,德布罗意那“相波”的速度c^2/v就比光速要快,但只要不携带能量和信息,它就不违背相对论。相对论并非有些人所想象的那样已被推翻,相反,它仍然是我们所能依赖的最可靠的基石之一。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2004-4-22 12:10 | 显示全部楼层
born from the simulation
上帝掷骰子吗——量子物理史话(11-4)
作者:castor_v_pollux 发表日期:20040415 14:55:44

 
&#58853;&#58853;第十一章 上帝的判决



这已经是我们第三次在精疲力竭之下无功而返了。隐变量所给出的承诺固然美好,可是最终的兑现却是大打折扣的,这未免教人丧气。虽然还有玻姆在那里热切地召唤,但为了得到一个决定性的理论,我们付出的代价是不是太大了点?这仍然是很值得琢磨的事情,同时也使得我们不敢轻易地投下赌注,义无反顾地沿着这样的方向走下去。

如果量子论注定了不能是决定论的,那么我们除了推导出类似“坍缩”之类的概念以外,还可以做些什么假设呢?

有一种功利而实用主义的看法,是把量子论看作一种纯统计的理论,它无法对单个系统作出任何预测,它所推导出的一切结果,都是一个统计上的概念!也就是说,在量子论看来,我们的世界中不存在什么“单个”(individual)的事件,每一个预测,都只能是平均式的,针对“整个集合”(ensemble)的,这也就是“系综解释”(the ensemble interpretation)一词的来源。

大多数系综论者都喜欢把这个概念的源头上推到爱因斯坦,比如John Taylor,或者加拿大McGill大学的B. C. Sanctuary。爱因斯坦曾经说过:“任何试图把量子论的描述看作是对于‘单个系统’的完备描述的做法都会使它成为极不自然的理论解释。但只要接受这样的理解方式,也即(量子论的)描述只能针对系统的‘全集’,而非单个个体,上述的困难就马上不存在了。”这个论述成为了系综解释的思想源泉(见于Max Jammer《量子力学的哲学》一书)。

嗯,怎么又是爱因斯坦?我们还记忆犹新的是,隐变量不是也把他拉出来作为感召和口号吗?或许爱因斯坦的声望太隆,任何解释都希望从他那里取得权威性,不过无论如何,从这一点来说,系综和隐变量实际上是有着相同的文化背景的。但是它们之间不同的是,隐变量在作出“量子论只不过是统计解释”这样的论断后,仍然怀着满腔热情去寻找隐藏在它背后那个更为终极的理论,试图把我们所看不见的隐变量找出来以最终实现物理世界所梦想的最高目标:理解和预测自然。它那锐意进取的精神固然是可敬的,但正如我们已经看到的那样,在现实中遭到了严重的困难和阻挠,不得不为此放弃许多东西。

相比隐变量那勇敢的冲锋,系综解释选择固本培元,以退为进的战略。在它看来,量子论是一个足够伟大的理论,它已经界定了这个世界可理解的范畴。的确,量子论给我们留下了一些盲点,一些我们所不能把握的东西,比如我们没法准确地同时得到一个电子的位置和动量,这叫一些持完美主义的人们觉得坐立不宁,寝食难安。但系综主义者说:“不要徒劳地去探索那未知的领域了,因为实际上不存在这样的领域!我们的世界本质上就是统计性质的,没有一个物理理论可以描述‘单个’的事件,事实上,在我们的宇宙中,只有‘系综’,或者说‘事件的全集’才是有物理意义的。”

这是什么意思呢?我们还是用大家都熟悉的老例子,双缝前的电子来说明问题。当电子通过双缝后,假设我们没有刻意地去观察它,那么按照量子论,它应该有一个确定而唯一的,按照时间和薛定谔方程发展的态矢量:

|电子>=|穿过左缝>+|穿过右缝>

按照标准哥本哈根解释,这意味着单个电子必须同时处在|左>和|右>两个态的叠加之中,电子没有一个确定的位置,它同时又在这里又在那里!按照MWI,这是一种两个世界的叠加。按照隐变量,所谓的叠加都是胡扯,量子论的这种数学形式是靠不住的,假如我们考虑了不可见的隐变量,我们就能确实地知道,电子究竟通过了左边还是右边。那么,系综解释对此又有何高见呢?

它所持的是一种外交式的圆滑态度:量子论的数学形式经得起时间考验,是一定要保留的。但“叠加”什么的明显违背常识,是不对的。反过来,一味地急功冒进,甚至搞出什么不可观察的隐变量,这也太过火了,更不能当真。再怎么说,实验揭示给我们的结果是纯随机性质的,没人可以否认。

那么,我们应该怎么办呢?

系综解释说:我们应当知足,相信理论告诉我们的已经是这个世界的本质:它本就是统计性的!所以,徒劳地去设计隐变量是没有用的,因为实验已经告诉我们定域的隐变量理论是没有的,而且实验也告诉我们对同样的系统的观测不会每次都给出确定的结果。但是,我们也不能相信所谓的“叠加”是一种实际上的存在,电子不可能又通过左边又通过右边!我们的结论应该是:对于电子的态矢量,它永远都只代表系统“全集”的统计值,也就是一种平均情况!

什么叫只代表“全集”呢?换句话说,当我们写下:

|电子>=1/SQRT(2) [ |穿过左缝>+|穿过右缝> ]

这样的式子时(1/SQRT(2)代表根号2分之1,我们假设两种可能相等,所以系数的平方,也就是概率之和等于1),我们所指的并不是“一个电子”的运动情况,而永远是无限个电子在相同情况下的一个统计平均!这个式子只描述了当无穷多个电子在相同的初状态下通过双缝(或者,一个电子无穷次地在同样的情况下通过双缝)时会出现的结果。根据量子论,世界并非决定论的,也就是说,哪怕我们让两个电子在完全相同的状态下通过双缝,观测到的结果也不一定每次都一样,而是有多种可能。而量子论的数学所能告诉我们的,正是所有这些可能的“系综”,也就是统计预期!

如此一来,当我们说“电子=左+右”的时候,意思就并非指一个单独的电子同时处于左和右两个态,而只是在经典概率的概念上指出它有50%的可能通过左,而50%的可能通过右罢了。当我们“准备”这样一个实验的时候,量子论便能够给出它的系综,在一个统计的意义上告诉我们实验的结果。

态矢量只代表系统的系综!嗯,听上去蛮容易理解的,似乎皆大欢喜。可是这样一来,量子论也就变成一个统计学的理论了,好吧,当许多电子穿过双缝时,我们知道有50%通过了左边,50%通过了右边,可现在我们关心的是单个电子!单个电子是如何通过双缝并与自己发生干涉,最后在荧屏上打出一个组成干涉图纹的一点的呢?我们想听听系综解释对此有何高见。

但要命的是,它对此什么都没说!在它看来,所谓“单个电子通过了哪里”之类的问题,是没有物理意义的!当John Taylor被问道,他是否根本没有想去描述单个系统中究竟发生了什么的时候,他甚至说,这是不被允许的。量子物理所给出的只是统计性,that’s all,没有别的了。如果这个世界能够被我们用数学方法去理解的话,那就是在一种统计的意义上说的,我们不自量力地想去追寻更多,那只不过是自讨苦吃。单个电子的轨迹,那是一个没有物理定义的概念,正如“时间被创造前1秒”,“比光速更快1倍”,或者“绝对零度低1度”这样的名词,虽然没有语法上的障碍阻止我们提出这样的问题,但它们在物理上却是没什么意思的。和哥本哈根派不同的是,玻尔等人假设每个电子都实际地按照波函数发散开来,而系综解释则是简单地把这个问题踢出了理论框架中去,来个眼不见为净:现在我们不必为“坍缩”操心了,谈论单个电子是没有意义的事情!

不过,这实在是太掩耳盗铃了。好吧,量子论只给出系综,可是我们对于物理理论的要求毕竟要比这样的统计报告要高那么一点啊。假如我去找占卜师算命,想知道我的寿限是多少,她却只告诉我:这个城市平均寿命是70岁,那对我来说似乎没有很大的用处啊,我还不如去找保险公司!更可恨的是,她居然对我说,你一个人的寿命是没什么意义的,有意义的只是千千万万个你的寿命的“系综”!

系综解释是一种非常保守和现实主义的解释,它保留了现有量子论的全部数学形式,因为它们已经被实践所充分证明。但在令人目眩的哲学领域,它却试图靠耍小聪明而逃避那些形而上的探讨,用划定理论适用界限这样的方法来把自己封闭在一个刀枪不入的外壳中。是的,如果我们采纳系综主义,那么的确在纯理论方面说,我们的一切问题都解决了:没有什么坍缩,电子永远只是粒子(波性只能用来描述粒子的“全集”),不确定原理也只是被看成一个统计极限,而不理会单个电子到底能不能同时拥有动量和位置(这个问题“没有意义”)。但是,这样似乎有点自欺欺人的味道,把搞不清楚的问题划为“没有意义”也许是方便的,但的确是这样的问题使得科学变得迷人!每个人都知道,当许多电子通过双缝时产生了干涉图纹,可我们更感兴趣的还是当单个电子通过时究竟发生了什么,而不是简单地转过头不去面对!

Taylor在访谈中的确被问道,这样的做法不是一个当“逃兵”的遁词吗?他非常精明地回答说:“我认为你应当问一问,如果陷进去是否比逃之夭夭确实会惹出更多的麻烦。”系综主义者持有的是极致的实用主义,他们炮轰隐变量和多宇宙解释,因为后两者都带来了许多形而上学的“麻烦”。只要我们充分利用现有的体系,搞出一个又不违反实验结果,又能在逻辑上自洽的体系,那不就足够了吗?系综解释的精神,就是尽可能少地避免“麻烦”,绝不引入让人头痛的假设,比如多宇宙或者坍缩之类的。

但是,我们还是不能满足于这样的关起门来然后自称所有的问题都已经解决的做法。或许,是因为我们血液中的热情还没有冷却,或许,是因为我们仍然年少轻狂,对于这个宇宙还怀有深深的激动和无尽的好奇。我们并不畏惧进入更为幽深和神秘的峡谷和森林,去探究那事实的真相。哪怕注定要被一些更加恼人和挥之不去的古怪精灵所缠绕,我们还是不可以放弃了前进的希望和动力,因为那是我们最宝贵的财富。

接下来我们还要去看看两条新的道路,虽然它们都新辟不久,坎坷颠簸,行进艰难,但沿途那奇峰连天,枯松倒挂,瀑布飞湍,冰崖怪石的绝景一定不会令你失望。



上帝掷骰子吗——量子物理史话(11-5)
作者:castor_v_pollux 发表日期:20040420 08:53:21

 
&#58853;&#58853;第十一章 上帝的判决



我们已经厌倦了光子究竟通过了哪条狭缝这样的问题,管它通过了哪条,这和我们又有什么关系呢?一个小小的光子是如此不起眼,它的世界和我们的世界相去霄壤,根本无法联系在一起。在大多数情况下,我们甚至根本没法看见单个的光子(有人做过实验,肉眼看见单个光子是有可能的,但机率极低,而且它的波长必须严格地落在视网膜杆状细胞最敏感的那个波段),在这样的情况下,大众对于探究单个光子究竟是“幽灵”还是“实在”无疑持有无所谓的态度,甚至觉得这是一种杞人忧天的探索。

真正引起人们担忧的,还是那个当初因为薛定谔而落下的后遗症:从微观到宏观的转换。如果光子又是粒子又是波,那么猫为什么不是又死而又活着?如果电子同时又在这里又在那里,那么为什么桌子安稳地呆在它原来的地方,没有扩散到整间屋子中去?如果量子效应的基本属性是叠加,为什么日常世界中不存在这样的叠加,或者,我们为什么从未见过这种情况?

我们已经听取了足够多耐心而不厌其烦的解释:猫的确又死又活,只不过在我们观测的时候“坍缩”了;有两只猫,它们在一个宇宙中活着,在另一个宇宙中死去;猫从未又死又活,它的死活由看不见的隐变量决定;单个猫的死活是无意义的事件,我们只能描述无穷只猫组成的“全集”……诸如此类的答案。也许你已经对其中的某一种感到满意,但仍有许多人并不知足:一定还有更好,更可靠的答案。为了得到它,我们仍然需要不断地去追寻,去开拓新的道路,哪怕那里本来是荒芜一片,荆棘丛生。毕竟世上本没有路,走的人多了才成为路。

现在让我们跟着一些开拓者小心翼翼地去考察一条新辟的道路,和当年扬帆远航的哥伦布一样,他们也是意大利人。这些开拓者的名字刻在路口的纪念碑上:Ghirardi,Rimini和Weber,下面是落成日期:1986年7月。为了纪念这些先行者,我们顺理成章地把这条道路以他们的首字母命名,称为GRW大道。

这个思路的最初设想可以回溯到70年代的Philip Pearle:哥本哈根派的人物无疑是伟大和有洞见的,但他们始终没能给出“坍缩”这一物理过程的机制,而且对于“观测者”的主观依赖也太重了些,最后搞出一个无法收拾的“意识”不说,还有堕落为唯心论的嫌疑。是否能够略微修改薛定谔方程,使它可以对“坍缩”有一个让人满意的解释呢?

1986年7月15日,我们提到的那3位科学家在《物理评论》杂志上发表了一篇论文,题为《微观和宏观系统的统一动力学》(Unified dynamics for microscopic and macroscopic systems),从而开创了GRW理论。GRW的主要假定是,任何系统,不管是微观还是宏观的,都不可能在严格的意义上孤立,也就是和外界毫不相干。它们总是和环境发生着种种交流,为一些随机(stochastic)的过程所影响,这些随机的物理过程——不管它们实质上到底是什么——会随机地造成某些微观系统,比如一个电子的位置,从一个弥漫的叠加状态变为在空间中比较精确的定域(实际上就是哥本哈根口中的“坍缩”),尽管对于单个粒子来说,这种过程发生的可能性是如此之低——按照他们原本的估计,平均要等上10^16秒,也就是近10亿年才会发生一次。所以从整体上看,微观系统基本上处于叠加状态是不假的,但这种定域过程的确偶尔发生,我们把这称为一个“自发的定域过程”(spontaneous localization)。GRW有时候也称为“自发定域理论”。

关键是,虽然对于单个粒子来说要等上如此漫长的时间才能迎来一次自发过程,可是对于一个宏观系统来说可就未必了。拿薛定谔那只可怜的猫来说,一只猫由大约10^27个粒子组成,虽然每个粒子平均要等上几亿年才有一次自发定域,但对像猫这样大的系统,每秒必定有成千上万的粒子经历了这种过程。

Ghirardi等人把薛定谔方程换成了所谓的密度矩阵方程,然后做了复杂的计算,看看这样的自发定域过程会对整个系统造成什么样的影响。他们发现,因为整个系统中的粒子实际上都是互相纠缠在一起的,少数几个粒子的自发定域会非常迅速地影响到整个体系,就像推倒了一块骨牌然后造成了大规模的多米诺效应。最后的结果是,整个宏观系统会在极短的时间里完成一次整体上的自发定域。如果一个粒子平均要花上10亿年时间,那么对于一个含有1摩尔粒子的系统来说(数量级在10^23个),它只要0.1微秒就会发生定域,使得自己的位置从弥漫开来变成精确地出现在某个地点。这里面既不要“观测者”,也不牵涉到“意识”,它只是基于随机过程!

如果真的是这样,那么当决定薛定谔猫的生死的那一刻来临时,它的确经历了死/活的叠加!只不过这种叠加只维持了非常短,非常短的时间,然后马上“自发地”精确化,变成了日常意义上的,单纯的非死即活。因为时间很短,我们没法感觉到这一叠加过程!这听上去的确不错,我们有了一个统一的理论,可以一视同仁地解释微观上的量子叠加和宏观上物体的不可叠加性。

但是,GRW自身也仍然面临着严重的困难,这条大道并不是那样顺畅的。他们的论文发表当年,海德堡大学的E.Joos就向《物理评论》递交了关于这个理论的评论,而这个评论也在次年发表,对GRW提出了置疑。自那时起,对GRW的疑问声一直很大,虽然有的人非常喜欢它,但是从未在物理学家中变成主流。怀疑的理由有许多是相当技术化的,对于我们史话的读者,我只想在最肤浅的层次上稍微提一些。

GRW的计算是完全基于随机过程的,而并不引入类如“观测使得波函数坍缩”之类的假设。他们在这里所假设的“自发”过程,虽然其概念和“坍缩”类似,实际上是指一个粒子的位置从一个非常不精确的分布变成一个比较精确的分布,而不是完全确定的位置!换句话说,不管坍缩前还是坍缩后,粒子的位置始终是一种不确定的分布,必须为统计曲线(高斯钟形曲线)所描述。所谓坍缩,只不过是它从一个非常矮平的曲线变成一个非常尖锐的曲线罢了。在哥本哈根解释中,只要一观测,系统的位置就从不确定变成完全确定了,而GRW虽然不需要“观测者”,但在它的框架里面没有什么东西是实际上确定的,只有“非常精确”,“比较精确”,“非常不精确”之类的区别。比如说当我盯着你看的时候,你并没有一个完全确定的位置,虽然组成你的大部分物质(粒子)都聚集在你所站的那个地方,但真正描述你的还是一个钟形线(虽然是非常尖锐的钟形线)!我只能说,“绝大部分的你”在你所站的那个地方,而组成你的另外的那“一小撮”(虽然是极少极少的一小撮)却仍然弥漫在空间中,充斥着整个屋子,甚至一直延伸到宇宙的尽头!

也就是说,在任何时候,“你”都填满了整个宇宙,只不过“大部分”的你聚集在某个地方而已。作为一个宏观物体的好处是,明显的量子叠加可以在很短的时间内完成自发定域,但这只是意味着大多数粒子聚集到了某个地方,总有一小部分的粒子仍然留在无穷的空间中。单纯地从逻辑上讲,这也没什么不妥,谁知道你是不是真有小到无可觉察的一部分弥漫在空间中呢?但这毕竟违反了常识!如果必定要违反常识,那我们干脆承认猫又死又活,似乎也不见得糟糕多少。

GRW还抛弃了能量守恒(当然,按照相对论,其实是质能守恒)。自发的坍缩使得这样的守恒实际上不成立,但破坏是那样微小,所需等待的时间是那样漫长,使得人们根本不注意到它。抛弃能量守恒在许多人看来是无法容忍的行为。我们还记得,当年玻尔的BKS理论遭到了爱因斯坦和泡利多么严厉的抨击。

还有,如果自发坍缩的时间是和组成系统的粒子数量成反比的,也就是说组成一个系统的粒子越少,其位置精确化所要求的平均时间越长,那么当我们描述一些非常小的探测装置时,这个理论的预测似乎就不太妙了。比如要探测一个光子的位置,我们不必动用庞大而复杂的仪器,而可以用非常简单的感光剂来做到。如果好好安排,我们完全可以只用到数十亿个粒子(主要是银离子)来完成这个任务。按照哥本哈根,这无疑也是一次“观测”,可以立刻使光子的波函数坍缩而得到一个确定的位置,但如果用GRW的方法来计算,这样小的一个系统必须等上平均差不多一年才会产生一次“自发”的定域。

Roland Omnes后来提到,Ghirardi在私人的谈话中承认了这一困难。但他争辩说,就算在光子使银离子感光这一过程中牵涉到的粒子数目不足以使系统足够快地完成自发定域,我们谁都无法意识到这一点!如果作为观测者的我们不去观测这个实验的结果,谁知道呢,说不定光子真的需要等上一年来得到精确的位置。可是一旦我们去观察实验结果,这就把我们自己的大脑也牵涉进整个系统中来了。关键是,我们的大脑足够“大”(有没有意识倒不重要),足够大的物体便使得光子迅速地得到了一个相对精确的定位!

推而广之,因为我们长着一个大脑袋,所以不管我们看什么,都不会出现位置模糊的量子现象。要是我们拿复杂的仪器去测量,那么当然,测量的时候对象就马上变得精确了。即使仪器非常简单细小,测量以后对象仍有可能保持在模糊状态,它也会在我们观测结果时因为拥有众多粒子的“大脑”的介入而迅速定域。我们是注定无法直接感觉到任何量子效应了,不知道一个足够小的病毒能否争取到足够长的时间来感觉到“光子又在这里又在那里”的奇妙景象(如果它能够感觉的话!)?

最后,薛定谔方程是线性的,而GRW用密度矩阵方程将它取而代之以后,实际上把整个理论体系变成了非线性的!这实际上会使它作出一些和标准量子论不同的预言,而它们可以用实验来检验(只要我们的技术手段更加精确一些)!可是,标准量子论在实践中是如此成功,它的辉煌是如此灿烂,以致任何想和它在实践上比高低的企图都显得前途不太美妙。我们已经目睹了定域隐变量理论的惨死,不知GRW能否有更好的运气?另一位量子论专家,因斯布鲁克大学的Zeilinger(提出GHZ检验的那个)在2000年为Nature杂志撰写的庆祝量子论诞生100周年的文章中大胆地预测,将来的实验会进一步证实标准量子论的预言,把非线性的理论排除出去,就像当年排除掉定域隐变量理论一样。

OK,我们将来再来为GRW的终极命运而担心,我们现在只是关心它的生存现状。GRW保留了类似“坍缩”的概念,试图在此基础上解释微观到宏观的转换。从技术上讲它是成功的,避免了“观测者”的出现,但它没有解决坍缩理论的基本难题,也就是坍缩本身是什么样的机制?再加上我们已经提到的种种困难,使得它并没有吸引到大部分的物理学家来支持它。不过,GRW不太流行的另一个重要原因,恐怕是很快就出现了另一种解释,可以做到GRW所能做到的一切。虽然同样稀奇古怪,但它却不具备GRW的基本缺点。这就是我们马上就要去观光的另一条道路:退相干历史(Decoherent Histories)。这也是我们的漫长旅途中所重点考察的最后一条道路了。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2004-6-15 14:49 | 显示全部楼层
Think Simulation
上帝掷骰子吗(12-1)
作者:castor_v_pollux 发表日期:2004-06-07 12:07:32

 
第十二章 新探险



1953年,年轻,但是多才多艺的物理学家穆雷&#8226;盖尔曼(Murray Gell-Mann)离开普林斯顿,到芝加哥大学担任讲师。那时的芝加哥,仍然笼罩在恩里科&#8226;费米的光辉之下,自从这位科学巨匠在1938年因为对于核物理理论的杰出贡献而拿到诺贝尔奖之后,已经过去了近16年。盖尔曼也许不会想到,再过16年,相同的荣誉就会落在自己身上。

虽然已是功成名就,但费米仍然抱着宽厚随和的态度,愿意和所有的人讨论科学问题。在核物理迅猛发展的那个年代,量子论作为它的基础,已经被奉为神圣而不可侵犯的经典,但费米却总是有着一肚子的怀疑,他不止一次地问盖尔曼:

既然量子论是正确的,那么叠加性必然是一种普遍现象。可是,为什么火星有着一条确定的轨道,而不是从轨道上向外散开去呢?

自然,答案在哥本哈根派的锦囊中是唾手可得:火星之所以不散开去,是因为有人在“观察”它,或者说有人在看着它。每看一次,它的波函数就坍缩了。但无论费米还是盖尔曼,都觉得这个答案太无聊和愚蠢,必定有一种更好的解释。

可惜在费米的有生之年,他都没能得到更好的答案。他很快于1954年去世,而盖尔曼则于次年又转投加州理工,在那里开创属于他的伟大事业。加州理工的好学生源源不断,哈特尔(James B Hartle)就是其中一个。60年代,他在盖尔曼的手下攻读博士学位,对量子宇宙学进行了充分的研究和思考,有一个思想逐渐在他的脑海中成型。那个时候,费因曼的路径积分方法已经被创立了20多年,而到了70年代,正如我们在史话的前面所提起过的那样,一种新的理论——退相干理论在Zurek和Zeh等人的努力下也被建立起来了。进入80年代,埃弗莱特的多宇宙解释在物理学界死灰复燃,并迅速引起了众人的兴趣……一切外部条件都逐渐成熟,等1984年,格里菲斯(Robert Griffiths)发表了他的论文之后,退相干历史(简称DH)解释便正式瓜熟蒂落了。

我们还记得埃弗莱特的MWI:宇宙在薛定谔方程的演化中被投影到多个“世界”中去,在每个世界中产生不同的结果。这样一来,在宇宙的发展史上,就逐渐产生越来越多的“世界”。历史只有一个,但世界有很多个!

当哈特尔和盖尔曼读到格里菲斯关于“历史”的论文之后,他们突然之间恍然大悟。他们开始叫嚷:“不对!事实和埃弗莱特的假定正好相反:世界只有一个,但历史有很多个!”

提起“历史”(History)这个词,我们脑海中首先联想到的恐怕就是诸如古埃及、巴比伦、希腊罗马、唐宋元明清之类的概念。历史学是研究过去的学问。但在物理上,过去、现在、未来并不是分得很清楚的,至少理论中没有什么特征可以让我们明确地区分这些状态。站在物理的角度谈“历史”,我们只把它定义成一个系统所经历的一段时间,以及它在这段时间内所经历的状态变化。比如我们讨论封闭在一个盒子里的一堆粒子的“历史”,则我们可以预计它们将按照热力学第二定律逐渐地扩散开来,并最终达到最大的热辐射平衡状态为止。当然,也有可能在其中会形成一个黑洞并与剩下的热辐射相平衡,由于量子涨落和霍金蒸发,系统很有可能将在这两个平衡态之间不停地摇摆,但不管怎么样,对应于某一个特定的时刻,我们的系统将有一个特定的态,把它们连起来,就是我们所说的这个系统的“历史”。

我们要时刻记住,在量子力学中一切都是离散而非连续的,所以当我们讨论“一段时间”的时候,我们所说的实际上是一个包含了所有时刻的集合,从t0,t1,t2,一直到tn。所以我们说的“历史”,实际上就是指,对应于时刻tk来说,系统有相应的态Ak。

我们还是以广大人民群众喜闻乐见的比喻形式来说明问题。想象一支足球队参加某联赛,联赛一共要进行n轮。那么,这支球队的“历史”无非就是:对应于第k轮联赛(时刻k),如果我们进行观测,则得到这场比赛的结果Ak(Ak可以是1:0,2:1,3:3……等等)。如果完整地把这个球队的“历史”写出来,则大概是这个样子:

1:2, 2:3, 1:1, 4:1, 2:0, 0:0, 1:3……

为了简便起见,我们现在仅仅考察一场比赛的情况。一场比赛所有可能的“历史”的总数,理论上说是无穷多的,当然在现实里,比分一般不会太高。如果比赛尚未进行,或者至少,我们尚不知道其结果,那么对于每一种“历史”我们就只能估计它发生的可能性。在实际中,即使是概率也经常很难算准(尽管参考博彩公司的赔率或者浏览一些赌波网站或许能提供某些帮助,但它们有时候是相当误导的),但我们在此讨论的是理论问题,因此我们就假定通过计算,关于任何一种历史我们都能够得到一个准确的概率。比方说,1:0获胜这样一种“历史”发生的可能性是10%,1:2落败则有20%……等等。

说了这么多,这些有什么用呢?切莫心急,很快就见分晓。

到现在为止,因为我们处理的都还是经典概率,所以它们是“可加”的!也就是说,如果我们有两种历史a和b,它们发生的概率分别是Pa和Pb,则“a或者b”发生的概率就是Pa+Pb。拿我们的例子来说,如果我们想问:“净胜2球的可能性是多少?”,那么它必然等于所有“净胜两球”的历史概率的总和,也就是P(2:0)+P(3:1)+P(4:2)+…这看起来似乎是天经地义。

但让我们回到量子论中来。稀奇的是,在量子论里,这样的加法并不总是能够实现!拿我们已经讨论得口干舌燥的那个实验来说,如果“电子通过左缝”是一种历史,“电子通过右缝”是另一种历史,那么“电子通过左缝或者通过右缝”的可能性是多少呢?我们必须把它放到所谓的“密度矩阵”D中去计算,把它们排列成表格!

在这个表格中,呆在坐标(左,左)上的那个值就是“通过左缝”这个历史的概率。呆在(右,右)上的,则无疑是“通过右缝”的概率。但等等,我们还有两个多余的东西,D(左,右)和D(右,左)!这两个是什么东西?它们不是任何概率,而表明了“左”和“右”两种历史之间的交叉干涉!要命的是,计算结果往往显示这些干涉项不为0。

换句话说,“通过左缝”和“通过右缝”这两种历史不是独立自主的,而是互相纠缠在一起,它们之间有干涉项。当我们计算“电子通过左缝或者通过右缝”这样一种情况的时候,我们得到的并非一个传统的概率,干脆地说,这样一个“联合历史”是没有概率的!这也就是为什么在双缝实验中,我们不能说“电子要么通过左缝,要么通过右缝”的原因,它必定同时通过了双缝,因为这两种历史是“相干”的!

回到我们的足球比喻,在一场“量子联赛”中,所有可能的历史都是相干的,1:0这种历史和2:0这种历史互相干涉,所以它们的概率没有可加性!也就是说,如果1:0的可能性是10%,2:0的可能性是15%,那么“1:0或者2:0”的可能性却不是25%,而是某种模糊的东西,它无法被赋予一个概率!

这听上去可真不美妙,如果这些概率不能相加,那么赌球的人或者买足球彩票的人一定都不知所措,没法合理地投入资金了。如果不能计算概率, 那我们还能做什么呢?但是且莫着急,因为奇妙的事情马上就要发生了:虽然我们无法预测“1:0或者2:0”的概率是多少,然而我们却的确可以预言“胜或者平”的概率是多少!这都是因为“退相干”机制的存在!

魔术的秘密在这里:当我们不关心一场比赛的具体比分,而只关心其胜负关系的时候,我们实际上忽略了许多信息。比如说,当我们讨论一种历史是“胜,胜,平,负,胜,负……”,而不是具体的比分的时候,我们实际上构建了一种“粗略的”历史。在每一轮联赛中,我们观察到的态Ak都包含了无数种更加精细的态。例如当我们说第二轮球队“胜”的时候,其中包括了1:0,2:1,2:0,3:1……所有可以归纳为“胜”的具体赛果。在术语中,我们把每一种具体的可能比分称为“精粒历史”(fine-grained history),而把类似“胜”,“负”这样的历史称为“粗粒历史”(coarse-grained history)。

再一次为了简便起见,我们仅仅考察一场比赛的情况。对于单单一场比赛来说,它的“粗粒历史”无非有3种:胜,平,负。如果“胜”的可能性是30%,“平”的可能性是40%,那么“非胜即平”,也就是“不败”的可能性是多少呢?大家对我们上面的讨论还记忆犹新,可能会开始担忧,因为量子论或许不能给出一个经典的概率来,但这次不同了!这一次,量子论给出了一个类似经典概率的答案:“不败”的概率=30+40=70%!

这是为什么呢?原来,当我们计算“胜”和“平”之间的关系时,我们实际上计算了所有包含在它们之中的“精粒历史”之间的关系!如果我们把“胜”和“平”放到矩阵中去计算,我们的确也会得到干涉项如(胜,平),但这个干涉项是什么呢?它是所有组成两种粗粒历史的精粒历史的干涉之和!也就是说,它包括了“1:0和0:0之间的干涉”,“1:0和1:1之间的干涉”,“2:0和1:1之间的干涉”……等等。总之,每一对可能的干涉都被计算在内了,我们惊奇地发现,所有这些干涉加在一起,正好抵消了个干净。当最后的结果出来时,“胜”和“平”之间的干涉项即使没有完全消失,也已经变得小到足以忽略不计。“胜”和“平”两种粗粒历史不再相干,它们“退相干”了!

在量子力学中,我们具体可以采用所谓的“路径积分”(path integral)的办法,构造出一个“退相干函数”来计算所有的这些历史。我们史话的前面已经略微提起过路径积分,它是鼎鼎有名的美国物理学家费因曼在1942年发表的一种量子计算方法,费因曼本人后来也为此与人共同分享了1965年的诺贝尔物理奖。路径积分是一种对于整个时间和空间求和的办法,当粒子从A地运动到B地,我们把它的轨迹表达为所有可能的空间和所有可能的时间的叠加!我们只关心它的初始状态和最终状态,而忽略它的中间状态,对于这些我们不关心的状态,我们就把它在每一种可能的路径上遍历求和,精妙的是,最后这些路径往往会自相抵消掉。

在量子足球场上发生的是同样的事情:我们只关心比赛的胜负结果,而不关心更加细微的事情例如具体的比分。当我们忽略具体比分的时候,事实上就对于每一种可能的比分(历史)进行了遍历求和。当所有的精粒历史被加遍了以后,它们之间的干涉往往会完全抵消,或者至少,几乎完全抵消。这个时候,经典概率就又回到桌面上来,两个粗粒历史的概率又变得可加了,量子论终于又可以管用了!我们也许分不清一场比赛究竟是1:0还是2:0,但我们无疑可以分清一场比赛究竟是赢了还是平了!因为这两种历史之间不再相干!

关键在于,我们必须构建起足够“粗粒”的历史。这就像我传给你两张数字照片,分别是珍妮弗&#8226;洛佩兹和珍妮弗&#8226;安妮斯顿的特写,然后问你,你觉得两人谁更漂亮。假如你把这些照片放到最大最大,你看见的很可能只是一些颜色各异的色块,两张照片对你来说似乎也没什么大的分别。只有把分辨率调得足够低或者你退开足够远的距离,把这些色块都模糊化,你才能看见整个构图,从而有效地区分这两张照片的不同,进而作出比较。总之,只有当足够“粗粒”的时候,两张照片才能被区分开来,而我们的“历史”也是如此!如果两个历史的“颗粒太细”,以至于它们之间互相干涉,我们就无法把它们区分开来,比如我们无法区分“电子通过了左缝”和“电子通过了右缝”两种历史,它们同时发生着!但如果历史的粒子够“粗”,则我们便能够有效地分开两种历史,它们之间退相干了!

当我们观测了电子的行为,并得到最终结果后,我们实际上就构建了一种“粗粒历史”。我们可以把它归结成两种:“我们观测到粒子在左”以及“我们观测到粒子在右”。为什么说它们是粗粒历史呢?因为我们忽略的东西实在太多了。我们现在只关心我们观测到电子在哪个位置,而不关心我们站在实验室的哪个角落,今天吃了拉面还是汉堡还是寿司,更不关心当我们进行观测的时候,空气中有多少灰尘沾在我们身上,窗户里射进了多少光子与我们发生了相互作用……从理论上讲,每一种不同的情况都应该对应于一种特定的历史,比如“吃了拉面的我们观察到电子在左”和“吃了汉堡的我们观察到电子在左”其实是两种不同的历史。“观察到电子在左并同时被1亿个光子打中”与“观察到电子在左并同时被1亿零1个光子打中”也是两种不同的历史,但我们并不关心这些,而只是把它们简并到“我们观察到电子在左”这个类别里去,因此我们实际上构建了一个非常粗粒的历史。

现在,当我们计算“我们观测到电子在左”和“我们观测到电子在右”两个历史之间的干涉时,实际上就对太多的事情做了遍历求和。我们遍历了“吃了汉堡的你”,“吃了寿司的你”,“吃了拉面的你“……的不同命运。我们遍历了在这期间打到你身上的每一个光子,我们遍历了你和宇宙尽头的每一个电子所发生的相互作用……如果说“我们观测电子的位置”是一个系统,组成这个系统的有n个粒子,在这其中,有m个粒子的状态实际上决定了我们到底观测到电子在左还是在右。那么,除去这m个粒子之外,每一个粒子的命运都在计算中被加遍了。在时间上来说,除了实际观测的那一刻,每一个时刻——不管过去还是未来——所有粒子的状态也都被加遍了。在所有这些计算都完成了之后,在每一个方向上的干涉也就几乎相等了,它们将从结果中被抵消掉。最后,“我们观测到电子在左”和“我们观测到电子在右”两个粗粒历史退相干了,它们之间不再互相联系,而我们只能感觉到其中的某一种!

各位可能会觉得这听起来像一个魔幻故事,但这的确是最近非常流行的一种关于量子论的解释!1984年格里菲斯为它开拓了道路,而很快到了1991年,哈特尔就开始对它进行扩充和完善。不久盖尔曼和欧姆内斯(Roland Omnés)也加入到这一行列中来,这些杰出的物理学家很快把它变成了一个洋洋洒洒的体系。我们还是有必要进一步地考察这个思想,从而对量子论的内涵获取更深的领悟。

上帝掷骰子吗(12-2)
作者:castor_v_pollux 发表日期:2004-06-07 12:09:24

 
第十二章 新探险



按照退相干历史(DH)的解释,假如我们把宇宙的历史分得足够精细,那么实际上每时每刻都有许许多多的精粒历史在“同时发生”(相干)。比如没有观测时,电子显然就同时经历着“通过左缝”和“通过右缝”两种历史。但一般来说,我们对于过分精细的历史没有兴趣,我们只关心我们所能观测到的粗粒历史的情况。因为互相脱散(退相干)的缘故,这些历史之间失去了联系,只有一种能够被我们感觉到。

按照历史颗粒的粗细,我们可以创建一棵“历史树”。还是拿我们的量子联赛来说,一个球队在联赛中的历史,最粗可以分到什么程度呢?也许我们可以把它仅仅分成两种:“得到联赛冠军”和“没有得到联赛冠军”。在这个极粗的层面上,我们只具体关心有否获得冠军,别的一概不理,它们都将在计算中被加遍。但是我们也可以继续“精确”下去,比如在“得到冠军”这个分支上,还可以继续按照胜率再区分成“夺冠并且胜率超过50%”和“夺冠但胜率不超过50%”两个分支。类似地我们可以一直分下去,具体到总共获胜了几场,具体到每场的胜负……一直具体到每场的详细比分为止。当然在现实中我们仍可以继续“精粒化”,具体到谁进了球,球场来了多少观众,其中多少人穿了红衣服,球场一共长了几根草之类。但在这里我们假设,一场球最详细的信息就是具体的比分,没有更加详细的了。这样一来,我们的历史树分到具体的比分就无法再继续分下去,这最底下的一层就是“树叶”,也称为“最精粒历史”(maximally fine-grained histories)。

对于两片树叶来讲,它们通常是互相相干的。我们无法明确地区分1:0获胜和2:0获胜这两种历史,因此也无法用传统的概率去计算它们。但我们可以通过适当的粗粒化来构建符合常识的那些历史,比如我们可以区分“胜”,“平”和“负”这三大类历史,因为它们之间已经失去了干涉,退相干了。如此一来,我们就可以用传统的经典概率来计算这些历史,这就形成了“一族”退相干历史(a decoherent family of histories),只有在同一族里,我们才能运用通常的理性逻辑来处理它们之间的概率关系。有的时候,我们也不说“退相干”,而把它叫做“一致历史”(consistent histories),DH的创建人之一格里菲斯就爱用这个词,因此“退相干历史”也常常被称为“一致历史”解释,更加通俗一点,也可以称为“多历史”(many histories)理论。

一般来说,在历史树上越接近根部(往上),粗粒化就越厉害,其干涉也就越小。当然,并非所有的粗粒历史之间都没有干涉,可以被赋予传统概率,具体地要符合某种“一致条件”(consistency condition),而这些条件可以由数学严格地推导出来。

现在让我们考虑薛定谔猫的情况:当那个决定命运的原子衰变时,就这个原子本身来说,它的确经历着衰变/不衰变两种可能的精粒历史。原子本身只是单个粒子,我们忽略的东西并不多。但一旦猫被拖入这个剧情之中,我们的历史剧本换成了猫死/猫活两种,情况就不同了!无论是“猫死”还是“猫活”都是非常模糊的陈述,描述一只猫具体要用到10^27个粒子,当我们说“猫活”的时候,我们忽略了这只猫与外界的一切作用,比如它如何呼吸,如何与外界进行物质和能量交换……等等。就算是“猫死”,它身上的n个粒子也仍然要和外界发生相互作用。换句话说,“猫活”和“猫死”其实是两大类历史的总和,就像“胜”是“1:0”,“2:0”,“2:1”……等历史的总和一样。当我们计算“猫死”和“猫活”之间的干涉时,我们其实穷尽了这两大类历史下的每一对精粒历史之间的干涉,而它们绝大多数都最终抵消掉了。“猫死”和“猫活”之间那千丝万缕的联系于是被切断,它们退相干,最终只有其中的一个真正发生!如果从密度矩阵的角度来看问题,则其表现为除了矩阵对角线上的那些经典概率之外,别的干涉项都迅速消减为0:矩阵“对角化”了!而这里面既没有自发的随机定域,也没有外部的“观测者”,更没有看不见的隐变量!

如果DH解释是正确的,那么我们每时每刻其实都经历着多重的历史,世界上的每一个粒子,事实上都处在所有可能历史的叠加中!但一旦涉及到宏观物体,我们所能够观察和描述的则无非是一些粗粒化的历史,当细节被抹去时,这些历史便互相退相干,永久地失去了联系。比方说如果最终猫还活着,那么“猫死”这个分支就从历史树上被排除了,按照奥卡姆剃刀,我们不妨说这些历史已经不存在于宇宙之中。

嗯,虽然听起来古怪,但它至少可以自圆其说,不是吗?粗粒化的方法看起来可能让人困惑,但其实却并没有那么大惊小怪,我们事实上经常有意无意地用到这些办法。比如在中学里我们计算地球和太阳之间的引力,我们把两个星球“粗粒化”为两个质点。实际上地球和太阳是两个庞大的球体,但以质心代替所有的点,而忽略它们的具体位置之后,我们实际上已经不知不觉地加遍了两个球体内部每一对质点之间的吸引力。在DH解释中,我们所做的只不过更加复杂一点罢了。

从数学上说,DH是定义得很好的一个理论,而从哲学的雅致观点来看,其支持者也颇为得意地宣称它是一种假设最少,而最能体现“物理真实”的理论。但是,DH的日子也并不像宣扬的那样好过,对其最猛烈的攻击来自我们在上一章提到过的,GRW理论的创立者之一GianCarlo Ghirardi。自从DH理论创立以来,这位意大利人和其同事至少在各类物理期刊上发表了5篇攻击退相干历史解释的论文。Ghirardi敏锐地指出,DH解释并不比传统的哥本哈根解释好到哪里去!

正如我们已经为大家所描述过的那样,在DH解释的框架内我们定义了一系列的“粗粒”的历史,当这些历史符合所谓的“一致条件”时,它们就形成了一个互相之间退相干的历史族(family)。比如在我们的联赛中,针对某一场具体的比赛,“胜”,“平”,“负”就是一个合法的历史族,在它们之间只有一个能够发生,因为它们互相之间都已经几乎没有联系。但是,在数学上利用同样的手法,我们也可以定义一些另外的历史族,它们同样合法!比如我们并不一定关注胜负关系,而可以考虑另外的方面比如进球数。现在我们进行另一种粗粒化,把比赛结果区分为“没有进球”,“进了一个球”,“进了两个球”以及“进了两个以上的球”。从数学上看,这4种历史同样符合“一致条件”,它们构成了另一个完好的退相干历史族!

现在,当我们观测了一场比赛,所得到的结果就取决于所选择的历史族。对于同一场比赛,我们可能观测到“胜”,但换一个角度,也可能观测到“进了两个球”。当然,它们之间并不矛盾,但如果我们仔细地考虑一下,在“现实中”真正发生了什么,这仍然叫我们困惑。

当我们观测到“胜”的时候,我们假设在其属下所有的精粒历史都在发生,比如1:0,2:1,2:0,3:0……所有的历史都发生了,只不过我们观测不到具体的精细结果,也对它们并不感兴趣。可对于同样一场比赛,我们也可能观测到“进了两个球”,这时候我们的假设其实是,所有进了两个球的历史都发生了。比如2:0,2:1,2:2,2:3……
现在我们考虑某种特定的精粒历史,比如说1:0这样一个历史。虽然我们从来不会实际观测到这样一个历史,但这并不妨碍我们去问:1:0的历史究竟发生了没有?当观测结果是“胜”的时候,它显然发生了;而当观测结果是“进了两个球”的时候,它却显然没有发生!可是,我们描述的却是同一场比赛!
DH的本意是推翻教科书上的哥本哈根解释,把观测者从理论中赶出去,还物理世界以一个客观实在的解释。也就是说,所有的物理属性都是超越于你我的观察之外独立存在的,它不因为任何主观事物而改变。但现在DH似乎是哑巴吃黄连——有苦说不出。“1:0的历史究竟是否为真”这样一个物理描述,看来的确要取决于历史族的选择,而不是“客观存在”的!这似乎和玻尔他们是殊途同归:宇宙中没有纯粹的客观的物理属性,所有的属性都只能和具体的观察手段连起来讲!
但DH的支持者辩护说,任何理性的逻辑推理(reasoning),都只能用在同一个退相干家族中,而不能跨家族使用。比如当我们在“胜,平,负”这样一族历史中得到了“1:0的精粒历史发生了”这样一个结论后,我们绝不能把它带到另一族历史(比如“没进球,进1球,进2球,进2球以上”)中去,并与其相互比较。他们把这总结成所谓的“同族原则”(single family rule),并宣称这是量子论中最重要的原则。

这一点先放在一边不论,DH的另一个难题是,在理论中实际上存在着种类繁多的“退相干族”,而我们在现实中观察到的却只有一个!还是拿我们的量子联赛来说,就单单一场比赛而言,我们在前面定义了一个退相干族,也就是“胜,平,负”。这一族中包含了3大种粗粒历史,它们之间都互相退相干。这看上去一点都不错,但问题是,并不只有“胜,平,负”这样的分法是可能的,还有无穷种其他的分法,其中的大部分甚至是千奇百怪,不符合常识的,但理论并没有解释我们为何观测到的不是这些另外的分类!

比方说,我们从理论上定义3种历史:“又胜又平”,“又胜又负”,“又平又负”,这3种历史在数学上同样构成一个合法并且完好的退相干族:它们的概率可以经典相加,你无论观测到其中的哪一种,就无法再观测到另外的两种。但显然在实际中,一场比赛不可能“又胜又负”,那么DH就欠我们一个解释,它必须说明为什么在现实中的比赛是分成“胜,平,负”的,而不是“又胜又平”之类,虽然它们在数学上并没有太大的不同!

在这个问题上,DH的辩护者也许会说,理论只有义务解释现实的运作,而没有义务解释现实的存在!我们是从现实出发去建立理论,而不是从理论出发去建立现实!好比说“1头牛加1头牛等于2头牛”和“1头斯芬克斯加1头斯芬克斯等于2头斯芬克斯”在数学上都是成立的,但数学没有义务解释为什么在现实世界中,实际可供我们相加的只有牛,而没有斯芬克斯这样的怪兽。在这一点上实证主义者和柏拉图主义者往往会产生尖锐的冲突,一个突出的例子是我们在后面将会略微讨论到的超弦理论。弦论用10个维度来解释我们的世界,其中6个维度是蜷缩的,但它没有说明为什么是6个维度蜷缩,而不是5个或者8个维度,这使它受到了一些尖锐的诘问。但实证主义者常常会对这样的穷追猛打感到奇怪:因为只有假设6个维度蜷缩才能解释我们观测到的现实世界(现实世界是4维的),这就够了嘛,这不就是所有的理由吗?哪还来的那么多刨根问底呢?

不过DH的支持者如果护定这样一种实证主义立场的话,他们也许暂时忽略了建立这个理论的初衷,也就是摆脱玻尔和海森堡的哥本哈根解释——那可是最彻底的实证主义!不管怎么说,在这上面DH的态度是有些尴尬的,而有关量子力学的大辩论也仍在进行之中,我们仍然无法确定究竟谁的看法是真正正确的。量子魔术在困扰了我们超过100年之后,仍然拒绝把它最深刻的秘密展示在世人面前。也许,这一秘密,将终究成为永久的谜题。

*********
饭后闲话:时间之矢

我们生活在一个4维的世界中,其中3维是空间,1维是时间。时间是一个很奇妙的东西,它似乎和另3维空间有着非常大的不同,最关键的一点是,它似乎是有方向性的!拿空间来说,各个方向没有什么区别,你可以朝左走,也可以向右走,但在时间上,你只能从“过去”向“未来”移动,而无法反过来!虽然有太多的科幻故事讲述人们如何回到过去,但在现实中,这从来也没有发生过,而且很可能永远不会发生!这样猜测的理由还是基于某种类似人择原理的东西:假如理论上可以回到过去,那么虽然我们不行,未来的人却可以,但从未见到他们“回来”我们这个时代。所以很有可能的是,未来任何时代的人们都无法做到让时钟反方向转动,它是理论上无法做到的!

这看起来很正常,无法逆着时间箭头运动,这似乎天经地义。但在物理上,这却是令人困惑的,因为在理论中,似乎没有什么特征可以显示出时间有一个特别的方向。不论是牛顿还是爱因斯坦的理论,它们都是时间对称的!中学老师告诉你t0时刻的状态,你就可以向“未来”前进,推出tn时刻,但也可以反过来向“过去”前进,推出-tn时刻。理论没有告诉我们为什么时间只能向tn移动,而不可以反过来向-tn移动!事实上,在基本层面上,不管时间是正着走还是倒着走,它都是符合物理定律的!但是,一旦脱离基本层面,上升到一个比较高的层次,时间之矢却神秘地出现了:假如我们不考虑单个粒子,而考虑许多粒子的组合,我们就发现一个强烈的方向。比如我们本身只能逐渐变老,而无法越来越年轻,杯子会打碎,但绝不会自动粘贴在一起。这些可以概括为一个非常强大的定律,即著名的热力学第二定律,它说,一个孤立体系的混乱程度总是不断增加的,它的量度称为“熵”。换句话说,熵总是在变大,时间的箭头指向熵变大的那个方向!

现在我们考察量子论。在本节我们讨论了DH解释,所有的“历史”都是定义得很好的,不管你什么时候去测量,这些历史——从过去到未来——都已经在那里存在。我们可以问,当观测了t0时刻后,历史们将会如何退相干,但同样合法的是,我们也可以观测tn时刻,看“之前”的那些时刻如何退相干。实际上,当我们用路径积分把时间加遍的时候,我们仍然没有考虑过时间的方向问题,它在两个方向上都是没有区别的!再说,如果考察量子论的基本数学形式,那么薛定谔方程本身也仍然是时间对称的,唯一引起不对称的是哥本哈根所谓的“坍缩”,难道时间的“流逝”,其实等价于波函数不停的“坍缩”?然而DH是不承认这种坍缩的,或许,我们应当考虑的是历史树的裁剪?盖尔曼和哈特等人也试图从DH中建立起一个自发的时间箭头来,并将它运用到量子宇宙学中去。

我们先不去管DH,如果仔细考虑“坍缩”,还会出现一个奇怪现象:假如我们一直观察系统,那么它的波函数必然“总是”在坍缩,薛定谔波函数从来就没有机会去发展和演化。这样,它必定一直停留在初始状态,看上去的效果相当于时间停滞了。也就是说,只要我们不停地观察,波函数就不演化,时间就会不动!这个佯谬叫做“量子芝诺效应”(quantum Zeno effect),我们在前面已经讨论过了芝诺的一个悖论,也就是阿喀琉斯追乌龟,他另有一个悖论是说,一支在空中飞行的箭,其实是不动的。为什么呢?因为在每一个瞬间,我们拍一张snapshot,那么这支箭在那一刻必定是不动的,所以一支飞行的箭,它等于千千万万个“不动”的组合。问题是,每一个瞬间它都不动,连起来怎么可能变成“动”呢?所以飞行的箭必定是不动的!在我们的实验里也是一样,每一刻波函数(因为观察)都不发展,那么连在一起它怎么可能发展呢?所以它必定永不发展!

从哲学角度来说我们可以对芝诺进行精彩的分析,比如恩格斯漂亮地反驳说,每一刻的箭都处在不动与动的矛盾中,而真实的运动恰好是这种矛盾本身!不过我们不在意哲学探讨,只在乎实验证据。已经有相当多的实验证实,当观测频繁到一定程度时,量子体系的确表现出芝诺效应。这是不是说,如果我们一直盯着薛定谔的猫看,则它永远也不会死去呢?

时间的方向是一个饶有趣味的话题,它很可能牵涉到深刻的物理定律,比如对称性破缺的问题。在极早期宇宙的研究中,为了彻底弄明白时间之矢如何产生,我们也迫切需要一个好的量子引力理论,在后面我们会更详细地讲到这一点。我们只能向着未来,而不是过去前进,这的确是我们神奇的宇宙最不可思议的方面之一。

回复 支持 反对

使用道具 举报

 楼主| 发表于 2004-6-15 14:52 | 显示全部楼层
Think Simulation
上帝掷骰子吗(12-3)
作者:castor_v_pollux 发表日期:2004-06-07 12:10:49

 
第十二章 新探险



好了各位,到此为止,我们在量子世界的旅途已经接近尾声。我们已经浏览了绝大多数重要的风景点,探索了大部分先人走过的道路。但是,正如我们已经强烈地感受到的那样,对于每一条道路来说,虽然一路上都是峰回路转,奇境叠出,但越到后来却都变得那样地崎岖不平,难以前进。虽说“入之愈深,其进愈难,而其见愈奇”,但精神和体力上的巨大疲惫到底打击了我们的信心,阻止了我们在任何一条道上顽强地冲向终点。

当一次又一次地从不同的道路上徒劳而返之后,我们突然发现,自己已经处在一个巨大的迷宫中央。在我们的身边,曲折的道路如同蛛网一般地辐射开来,每一条都通向一个幽深的不可捉摸的未来。我已经带领大家去探讨了哥本哈根、多宇宙、隐变量、系综、GRW、退相干历史等6条道路,但要告诉各位的是,仍然还有非常多的偏僻的小道,我们并没有提及。比如有人认为当进行了一次“观测”之后,宇宙没有分裂,只有我们大脑的状态(或者说“精神”)分裂了!这称为“多精神解释”(many-minds intepretation),它名副其实地算得上一种精神分裂症!还有人认为,在量子层面上我们必须放弃通常的逻辑(布尔逻辑),而改用一种“量子逻辑”来陈述!另一些人不那么激烈,他们觉得不必放弃通常的逻辑,但是通常的“概率”概念则必须修改,我们必须引入“复”的概率,也就是说概率并不是通常的0到1,而是必须描述为复数!华盛顿大学的物理学家克拉默(John G Cramer)建立了一种非定域的“交易模型”(The transactional model),而他在牛津的同行彭罗斯则认为波函数的缩减和引力有关。彭罗斯宣称只要空间的曲率大于一个引力子的尺度,量子线性叠加规则就将失效,这里面还牵涉到量子引力的复杂情况诸如物质在跌入黑洞时如何损失了信息……等等,诸如此类。即便是我们已经描述过的那些解释,我们的史话所做的也只是挂一漏万,只能给各位提供一点最基本的概念。事实上,每一种解释都已经衍生出无数个变种,它们打着各自的旗号,都在不遗余力地向世人推销自己,这已经把我们搞得头晕脑胀,不知所措了。现在,我们就像是被困在克里特岛迷宫中的那位忒修斯(Theseus),还在茫然而不停地摸索,苦苦等待着阿里阿德涅(Ariadne)——我们那位可爱的女郎——把那个指引方向,命运攸关的线团扔到我们手中。

1997年,在马里兰大学巴尔的摩郡分校(UMBC)召开了一次关于量子力学的研讨会。有人在与会者中间做了一次问卷调查,统计究竟他们相信哪一种关于量子论的解释。结果是这样的:哥本哈根解释13票,多宇宙8票,玻姆的隐变量4票,退相干历史4票,自发定域理论(如GRW)1票,还有18票都是说还没有想好,或者是相信上述之外的某种解释。到了1999年,在剑桥牛顿研究所举行的一次量子计算会议上,又作了一次类似的调查,这次哥本哈根4票,修订过的运动学理论(它们对薛定谔方程进行修正,比如GRW)4票,玻姆2票,而多世界(MWI)和多历史(DH)加起来(它们都属于那种认为“没有坍缩存在”的理论)得到了令人惊奇的30票。但更加令人惊奇的是,竟然有50票之多承认自己尚无法作出抉择。在宇宙学家和量子引力专家中,MWI受欢迎的程度要高一些,据统计有58%的人认为多世界是正确的理论,而只有18%明确地认为它不正确。但其实许多人对于各种“解释”究竟说了什么是搞不太清楚的,比如人们往往弄不明白多世界和多历史到底差别在哪里,或许,它们本来就没有明确的分界线。就算是相信哥本哈根的人,他们互相之间也会发生严重的分歧,甚至关于它到底是不是一个决定论的解释也会造成争吵。量子论仍然处在一个战国纷争的时代,玻尔,海森堡,爱因斯坦,薛定谔……他们的背影虽然已经离我们远去,但他们当年曾战斗过的这片战场上仍然硝烟弥漫,他们不同的信念仍然支撑着新一代的物理学家,激励着人们为了那个神圣的目标而继续奋战。

想想也真是讽刺,量子力学作为20世纪物理史上最重要的成就之一,到今天为止它的基本数学形式已经被创立了将近整整80年。它在每一个领域内都取得了巨大的成功,以致和相对论一起成为了支撑物理学的两大支柱。80年!任何一种事物如果经历了这样一段漫长时间的考验后仍然屹立不倒,这已经足够把它变成不朽的经典。岁月将把它磨砺成一个完美的成熟的体系,留给人们的只剩下深深的崇敬和无限的唏嘘,慨叹自己为何不能生于乱世,提三尺剑立不世功名,参予到这个伟大工作中去。但量子论是如此地与众不同,即使在它被创立了80年之后,它仍然没有被最后完成!人们仍在为了它而争吵不休,为如何“解释”它而闹得焦头烂额,这在物理史上可是前所未有的事情!想想牛顿力学,想想相对论,从来没有人为了如何“解释”它们而操心过,对比之下,这更加凸现出量子论那独一无二的神秘气质。

人们的确有理由感到奇怪,为什么在如此漫长的岁月过去之后,我们不但没有对量子论了解得更清楚,反而越来越感觉到它的奇特和不可思议。最杰出的量子论专家们各执一词,人人都声称只有他的理解才是正确的,而别人都错了。量子谜题已经成为物理学中一个最神秘和不可捉摸的部位,Zeilinger有一次说:“我做实验的唯一目的,就是给别的物理学家看看,量子论究竟有多奇怪。”到目前为止,我们手里已经攥下了超过一打的所谓“解释”,而且它的数目仍然有望不断地增加。很明显,在这些花样繁多的提议中间,除了一种以外,绝大多数都是错误的。甚至很可能,到目前为止所有的解释都是错误的,但这却并没有妨碍物理学家们把它们创造出来!我们只能说,物理学家的想象力和创造力是非凡的,但这也引起了我们深深的忧虑:到底在多大程度上,物理理论如同人们所骄傲地宣称的那样,是对于大自然的深刻“发现”,而不属于物理学家们杰出的智力“发明”?

但从另外一方面看,我们对于量子论本身的确是没有什么好挑剔的。它的成功是如此巨大,以致于我们除了咋舌之外,根本就来不及对它的奇特之处有过多的评头论足。从它被创立之初,它就挟着雷霆万钧的力量横扫整个物理学,把每个角落都塑造得焕然一新。或许就像狄更斯说的那样,这是最坏的时代,但也是最好的时代。

量子论的基本形式只是一个大的框架,它描述了单个粒子如何运动。但要描述在高能情况下,多粒子之间的相互作用时,我们就必定要涉及到场的作用,这就需要如同当年普朗克把能量成功地量子化一样,把麦克斯韦的电磁场也进行大刀阔斧的量子化——建立量子场论(quantum field theory)。这个过程是一个同样令人激动的宏伟故事,如果铺展开来叙述,势必又是一篇规模庞大的史话,因此我们只是在这里极简单地作一些描述。这一工作由狄拉克开始,经由约尔当、海森堡、泡利和维格纳的发展,很快人们就认识到:原来所有粒子都是弥漫在空间中的某种场,这些场有着不同的能量形态,而当能量最低时,这就是我们通常说的“真空”。因此真空其实只不过是粒子的一种不同形态(基态)而已,任何粒子都可以从中被创造出来,也可以互相湮灭。狄拉克的方程预言了所谓的“反物质”的存在,任何受过足够科普熏陶的读者对此都应该耳熟能详:比如一个正常的氢原子由带正电的质子和带负电的电子组成,但在一个“反氢原子”中,质子却带着负电,而电子带着正电!当一个原子和一个“反原子”相遇,它们就轰隆一声放出大量的能量辐射,然后双方同时消失得无影无踪,其关系就符合20世纪最有名的那个物理方程:E=mc^2!

最早的“反电子”由加州理工的安德森(Carl Anderson)于1932年在研究宇宙射线的时候发现。它的意义是如此重要,以致于仅仅过了4年,诺贝尔奖评委会就罕见地授予他这一科学界的最高荣誉。

但是,虽然关于辐射场的量子化理论在某些问题上是成功的,但麻烦很快就到来了。1947年,在《物理评论》上刊登了有关兰姆移位和电子磁矩的实验结果,这和现有的理论发生了微小的偏差,于是人们决定利用微扰办法来重新计算准确的值。但是,算来算去,人们惊奇地发现,当他们想尽可能地追求准确,而加入所有的微扰项之后,最后的结果却适得其反,它总是发散为无穷大!

这可真是让人沮丧的结果,理论算出了无穷大,总归是一件荒谬的事情。为了消除这个无穷大,无数的物理学家们进行了艰苦卓绝,不屈不挠的斗争。这个阴影是如此难以驱散,如附骨之蛆一般地叫人头痛,以至于在一段时间里把物理学变成了一个让人无比厌憎的学科。最后的解决方案是日本物理学家朝永振一郎、美国人施温格(Julian S Schwiger)和戴森(Freeman Dyson),还有那位传奇的费因曼所分别独立完成的,被称为“重正化”(renormalization)方法,具体的技术细节我们就不用理会了。虽然认为重正化牵强而不令人信服的科学家大有人在,但是采用这种手段把无穷大从理论中赶走之后,剩下的结果其准确程度令人吃惊得瞠目结舌:处理电子的量子电动力学(QED)在经过重正化的修正之后,在电子磁距的计算中竟然一直与实验值符合到小数点之后第11位!亘古以来都没有哪个理论能够做到这样教人咋舌的事情。

实际上,量子电动力学常常被称作人类有史以来“最为精确的物理理论”,如果不是实验值经过反复测算,这样高精度的数据实在是让人怀疑是不是存心伪造的。但巨大的胜利使得一切怀疑都最终迎刃而解,QED也最终作为量子场论一个最为悠久和成功的分支而为人们熟知。虽然最近彭罗斯声称说,由于对赫尔斯-泰勒脉冲星系统的观测已经积累起了如此确凿的关于引力波存在的证明,这实际上使得广义相对论的精确度已经和实验吻合到10的负14次方,因此超越了QED(赫尔斯和泰勒获得了1993年诺贝尔物理奖)。但无论如何,量子场论的成功是无人可以否认的。朝永振一郎,施温格和费因曼也分享了1965年的诺贝尔物理奖。

抛开量子场论的胜利不谈,量子论在物理界的几乎每一个角落都激起激动人心的浪花,引发一连串美丽的涟漪。它深入固体物理之中,使我们对于固体机械和热性质的认识产生了翻天覆地的变化,更打开了通向凝聚态物理这一崭新世界的大门。在它的指引下,我们才真正认识了电流的传导,使得对于半导体的研究成为可能,而最终带领我们走向微电子学的建立。它驾临分子物理领域,成功地解释了化学键和轨道杂化,从而开创了量子化学学科。如今我们关于化学的几乎一切知识,都建立在这个基础之上。而材料科学在插上了量子论的双翼之后,才真正展翅飞翔起来,开始深刻地影响社会的方方面面。在量子论的指引之下,我们认识了超导和超流,我们掌握了激光技术,我们造出了晶体管和集成电路,为一整个新时代的来临真正做好了准备。量子论让我们得以一探原子内部那最为精细的奥秘,我们不但更加深刻地理解了电子和原子核之间的作用和关系,还进一步拆开原子核,领略到了大自然那更为令人惊叹的神奇。在浩瀚的星空之中,我们必须借助量子论才能把握恒星的命运会何去何从:当它们的燃料耗尽之后,它们会不可避免地向内坍缩,这时支撑起它们最后骨架的就是源自泡利不相容原理的一种简并压力。当电子简并压力足够抵挡坍缩时,恒星就演化为白矮星。要是电子被征服,而要靠中子出来抵抗时,恒星就变为中子星。最后,如果一切防线都被突破,那么它就不可避免地坍缩成一个黑洞。但即使黑洞也不是完全“黑”的,如果充分考虑量子不确定因素的影响,黑洞其实也会产生辐射而逐渐消失,这就是以其鼎鼎大名的发现者史蒂芬&#8226;霍金而命名的“霍金蒸发”过程。

当物质落入黑洞的时候,它所包含的信息被完全吞噬了。因为按照定义,没什么能再从黑洞中逃出来,所以这些信息其实是永久地丧失了。这样一来,我们的决定论再一次遭到毁灭性的打击:现在,即使是预测概率的薛定谔波函数本身,我们都无法确定地预测!因为宇宙波函数需要掌握所有物质的信息,而这些信息却不断地被黑洞所吞没。霍金对此说了一句同样有名的话:“上帝不但掷骰子,他还把骰子掷到我们看不见的地方去!”这个看不见的地方就是黑洞奇点。不过由于蒸发过程的发现,黑洞是否在蒸发后又把这些信息重新“吐”出来呢?在这点上人们依旧争论不休,它关系到我们的宇宙和骰子之间那深刻的内在关系。

最后,很有可能,我们对于宇宙终极命运的理解也离不开量子论。大爆炸的最初发生了什么?是否存在奇点?在奇点处物理定律是否失效?因为在宇宙极早期,引力场是如此之强,以致量子效应不能忽略,我们必须采取有效的量子引力方法来处理。在采用了费因曼的路径积分手段之后,哈特尔(就是提出DH的那个)和霍金提出了著名的“无边界假设”:宇宙的起点并没有一个明确的边界,时间并不是一条从一点开始的射线,相反,它是复数的!时间就像我们地球的表面,并没有一个地方可以称之为“起点”。为了更好地理解这些问题,我们迫切地需要全新的量子宇宙学,需要量子论和相对论进一步强强联手,在史话的后面我们还会讲到这个事情。

量子论的出现彻底改变了世界的面貌,它比史上任何一种理论都引发了更多的技术革命。核能、计算机技术、新材料、能源技术、信息技术……这些都在根本上和量子论密切相关。牵强一点说,如果没有足够的关于弱相互作用力和晶体衍射的知识,DNA的双螺旋结构也就不会被发现,分子生物学也就无法建立,也就没有如今这般火热的生物技术革命。再牵强一点说,没有量子力学,也就没有欧洲粒子物理中心(CERN),而没有CERN,也就没有互联网的www服务,更没有划时代的网络革命,各位也就很可能看不到我们的史话,呵呵。

如果要评选20世纪最为深刻地影响了人类社会的事件,那么可以毫不夸张地说,这既不是两次世界大战,也不是共产主义运动的兴衰,也不是联合国的成立,或者女权运动,殖民主义的没落,人类探索太空……等等。它应该被授予量子力学及其相关理论的创立和发展。量子论深入我们生活的每一个角落,它的影响无处不在,触手可得。许多人喜欢比较20世纪齐名的两大物理发现相对论和量子论究竟谁更“伟大”,从一个普遍的意义上来说这样的比较是毫无意义的,所谓“伟大”往往不具有可比性,正如人们无聊地争论李白还是杜甫,莫扎特还是贝多芬,汉朝还是罗马,贝利还是马拉多纳,Beatles还是滚石,阿甘还是肖申克……但仅仅从实用性的角度而言,我们可以毫不犹豫地下结论说:是的,量子论比相对论更加“有用”。

也许我们仍然不能从哲学意义上去真正理解量子论,但它的进步意义依旧无可限量。虽然我们有时候还会偶尔怀念经典时代,怀念那些因果关系一丝不苟,宇宙的本质简单易懂的日子,但这也已经更多地是一种怀旧情绪而已。正如电影《乱世佳人》的开头不无深情地说:“曾经有一片属于骑士和棉花园的土地叫做老南方。在这个美丽的世界里,绅士们最后一次风度翩翩地行礼,骑士们最后一次和漂亮的女伴们同行,人们最后一次见到主人和他们的奴隶。而如今这已经是一个只能从书本中去寻找的旧梦,一个随风飘逝的文明。”虽然有这样的伤感,但人们依然还是会歌颂北方扬基们最后的胜利,因为我们从他们那里得到更大的力量,更多的热情,还有对于未来更执着的信心。


上帝掷骰子吗(12-4)
作者:castor_v_pollux 发表日期:2004-06-07 12:11:56

 
第十二章 新探险



但量子论的道路仍未走到尽头,虽然它已经负担了太多的光荣和疑惑,但命运仍然注定了它要继续影响物理学的将来。在经历了无数的风雨之后,这一次,它面对的是一个前所未有强大的对手,也是最后的终极挑战——广义相对论。

标准的薛定谔方程是非相对论化的,在它之中并没有考虑到光速的上限。而这一工作最终由狄拉克完成,最后完成的量子场论实际上是量子力学和狭义相对论的联合产物。当我们仅仅考虑电磁场的时候,我们得到的是量子电动力学,它可以处理电磁力的作用。大家在中学里都知道电磁力:同性相斥,异性相吸,量子电动力学认为,这个力的本质是两个粒子之间不停地交换光子的结果。两个电子互相靠近并最终因为电磁力而弹开,这其中发生了什么呢?原来两个电子不停地在交换光子。想象两个溜冰场上的人,他们不停地把一只皮球抛来抛去,从一个人的手中扔到另一个人那里,这样一来他们必定离得越来越远,似乎他们之间有一种斥力一样。在电磁作用力中,这个皮球就是光子!那么同性相吸是怎么回事呢?你可以想象成两个人背靠背站立,并不停地把球扔到对方面对的墙壁上再反弹到对方手里。这样就似乎有一种吸力使两人紧紧靠在一起。

但是,当处理到原子核内部的事务时,我们面对的就不再是电磁作用力了!比如说一个氦原子核,它由两个质子和两个中子组成。中子不带电,倒也没有什么,可两个质子却都带着正电!如果说同性相斥,那么它们应该互相弹开,而怎么可能保持在一起呢?这显然不是万有引力互相吸引的结果,在如此小的质子之间,引力微弱得基本可以忽略不计,必定有一种更为强大的核力,比电磁力更强大,才可以把它们拉在一起不致分开。这种力叫做强相互作用力。

聪明的各位也许已经猜到了,既然有“强”相互作用力,必定相对地还有一种“弱”相互作用力,事实正是如此。弱作用力就是造成许多不稳定的粒子衰变的原因。这样一来,我们的宇宙中就总共有着4种相互作用力:引力、电磁力、强相互作用力和弱相互作用力。它们各自为政,互不管辖,遵守着不同的理论规则。

但所有这些力的本质是什么呢?是不是也如同电磁力那样,是因为交换粒子而形成的?日本物理学家汤川秀树——他或许是日本最著名的科学家——预言如此。在强相互作用力中,汤川认为这是因为核子交换一种新粒子——介子(meson)而形成的。他所预言的介子不久就为安德森等人所发现,不过那却是一种不同的介子,现在称为μ子,它和汤川理论无关。汤川所预言的那种介子现在称为π子,它最终在1947年为英国人鲍威尔(Cecil Frank Powell)在研究宇宙射线时所发现。汤川获得了1949年的诺贝尔物理奖,而鲍威尔获得了1950年的。对于强相互作用力的研究仍在继续,人们把那些感受强相互作用力的核子称为“强子”,比如质子、中子等。1964年,我们的盖尔曼提出,所有的强子都可以进一步分割,这就是如今家喻户晓的“夸克”模型。每个质子或中子都由3个夸克组成,每种夸克既有不同的“味道”,更有不同的“颜色”,在此基础上人们发明了所谓的“量子色动力学”(QCD),来描述。夸克之间同样通过交换粒子来维持作用力,这种被交换的粒子称为“胶子”(gluon)。各位也许已经有些头晕脑胀,我们就不进一步描述了。再说详细描述基本粒子的模型需要太多的笔墨,引进太多的概念,但我们的史话所留下的篇幅已经不多,所以只能这样简单地一笔带过。如果想更好地了解有关知识,盖尔曼曾写过一本通俗的读物《夸克与美洲豹》,而伟大的阿西莫夫(Isaac Asimov)则有更多精彩的论述,虽然时代已经不同,但许多作品却仍然并不过时!

强相互作用是交换介子,那么弱相互作用呢?汤川秀树同样预言它必定也交换某种粒子,这种粒子被称为“中间玻色子”。与强作用力所不同的是,弱相互作用力的理论形式看上去同电磁作用力非常相似,这使得人们开始怀疑,这两种力实际上是不是就是同一种东西,只不过在不同的环境中表现得不尽相同而已?特别是当李政道与杨振宁提出了弱作用下宇称不守恒之后,这一怀疑愈加强烈。终于到了60年代,统一弱相互作用力和电磁力的工作由美国人格拉肖(Sheldon Glashow)、温伯格(Steven Weinberg)和巴基斯坦人萨拉姆(Aldus Salam)所完成,他们的成果被称为“弱电统一理论”,3人最终为此得到了1979年的诺贝尔奖。该理论所预言的3种中间玻色子(W+,W-和Z0)到了80年代被实验所全部发现,更加证实了它的正确性。

物理学家们现在开始大大地兴奋起来了:既然电磁力和弱作用力已经被证明是同一种东西,可以被一个相同的理论所描述,那么我们又有什么理由不去相信,所有的4种力其实都是同一种东西呢?所有的物理学家都相信,上帝——大自然的创造者——他老人家是爱好简单的,他不会把我们的世界搞得复杂不堪,让人摇头叹气,他必定按照某一种标准的模式创造了这个宇宙!而我们要做的工作,就是把上帝所依据的这个蓝图找出来。这蓝图必定只有一份,而所有的物理现象,物理力都被涵盖在这个设计之中!如果模仿《独立宣言》中那著名的句子,物理学家完全愿意宣称:

我们认为这是不言而喻的事实:每一种力都是被相同地创造的。
We hold the truth to be self-evident, that all forces are created equal.

是啊,要是真有那么一个理论,它可以描述所有的4种力,进而可以描述所有的物理现象,那该是怎样一幅壮观的场面啊!那样一来,整个自然,整个物理就又重新归于统一之中,就像史诗中所描写的那个传奇的黄金时代与伟大的经典帝国,任何人都无法抗拒这样一种诱人的景象,仿佛一个新的伟大时代就在眼前。戎马已备,戈矛已修,浩浩荡荡的大军终于就要出发,去追寻那个失落已久的统一之梦。

现在,弱作用力和电磁力已经被合并了,下一个目标是强相互作用力,正如我们已经介绍的那样,这块地域目前为止被量子色动力学所统治着。但幸运地是,虽然兵锋指处,形势紧张严峻,大战一触即发,但两国的君主却多少有点血缘关系,这给和平统一留下了余地:它们都是在量子场论的统一框架下完成的。1954年,杨振宁和米尔斯建立了规范场论,而吸取了对称性破缺的思想之后,这使得理论中的某些没有质量的粒子可以自发地获得质量。正因为如此,中间玻色子和光子才得以被格拉肖等人包含在同一个框架内。而反观量子色动力学,它本身就是模仿量子电动力学所建立的,连名字都模仿自后者!所不同的是光子不带电荷,但胶子却带着“颜色”荷,但如果充分地考虑自发对称破缺的规范场,将理论扩充为更大的单群,把胶子也拉进统一中来并非不可能。这样的理论被骄傲地称为“大统一理论”(Grand Unified Theory,GUT),它后来发展出了多个变种,但不管怎样,其目标是一致的,那就是统一弱相互作用力、强相互作用力和电磁力3种力,把它们合并在一起,包含到同一个理论中去。不同的大统一理论预言了一些不同的物理现象,比如质子可能会衰变,比如存在着磁单极子,或者奇异弦,但可惜的是,到目前为止这些现象都还没有得到确凿的证实。退一步来说,由于理论中一些关键的部分比如希格斯玻色子的假设到目前为止都尚未在实验中发现,甚至我们连粒子的标准模型也不能100%地肯定正确。但无论如何,大统一理论是非常有前途的理论,人们也有理由相信它终将达到它的目标。

可是,虽然号称“大统一”,这样的称号却依旧是名不副实的。就算大统一理论得到了证实,天下却仍未统一,四海仍未一靖。人们怎么可以遗漏了那块辽阔的沃土——引力呢?GUT即使登基,他的权力仍旧是不完整的,对于引力,他仍旧鞭长莫及。天无二日民无二君,雄心勃勃的物理学家们早就把眼光放到了引力身上,即使他们事实上连强作用力也仍未最终征服。正可谓尚未得陇,便已望蜀。

引力在宇宙中是一片独一无二的区域,它和其他3种力似乎有着本质的不同。电磁力有时候互相吸引,有时候互相排斥,但引力却总是吸引的!这使它可以在大尺度上累加起来。当我们考察原子的时候,引力可以忽略不计,但一旦我们的眼光放到恒星、星云、星系这样的尺度上,引力便取代别的力成了主导因素。想要把引力包含进统一的体系中来是格外困难的,如果说电磁力、强作用力和弱作用力还勉强算同文同种,引力则傲然不群,独来独往。何况,我们并没有资格在它面前咆哮说天兵已至,为何还不服王化云云,因为它的统治者有着同样高贵的血统和深厚的渊源:这里的国王是爱因斯坦伟大的广义相对论,其前身则是煌煌的牛顿力学!

物理学到了这个地步,只剩下了最后一个分歧,但也很可能是最难以调和和统一的分歧。量子场论虽然争取到了狭义相对论的合作,但它还是难以征服引力:广义相对论拒绝与它联手统治整个世界,它更乐于在引力这片保留地上独立地呼风唤雨。从深层次的角度上说,这里凸现了量子论和相对论的内在矛盾,这两个20世纪的伟大物理理论之间必定要经历一场艰难和痛苦的融合,才能孕育出最后那个众望所归的王者,完成“普天之下,莫非王土”的宏愿。

物理学家有一个梦想,一个深深植根于整个自然的梦想。他们梦想有一天,深壑弥合,高山夷平,荆棘变沃土,歧路变通衢。他们梦想造物主的光辉最终被揭示,而众生得以一起朝觐这一终极的奥秘。而要实现这个梦想,就需要把量子论和相对论真正地结合到一起,从而创造一个量子引力理论。它可以解释一切的力,进而阐释一切的物理现象。这样的理论是上帝造物的终极蓝图,它讲述了这个自然最深刻的秘密。只有这样的理论,才真正有资格称得上“大统一”,不过既然大统一的名字已经被GUT所占用了,人们给这种终极理论取了另外一个名字:万能理论(Theory of Everything,TOE)。

爱因斯坦在他的晚年就曾经试图去实现这个梦想,在普林斯顿的那些日子里,他的主要精力都放在如何去完成统一场论上(虽然他还并不清楚强力和弱力这两个王国的存在)。但是,爱因斯坦的战略思想却是从广义相对论出发去攻打电磁力,这样的进攻被证明是极为艰难而伤亡惨重的:不仅边界上崇山峻岭,有着无法克服的数学困难,而且对方居高临下,地形易守难攻,占尽了便宜。虽然爱因斯坦执着不懈地一再努力,但整整30年,直到他去世为止,仍然没能获得任何进展。今天看来,这个失败是不可避免的,广义相对论和量子论之间有一条深深的不可逾越的鸿沟,而爱因斯坦的旧式军队是绝无可能跨越这个障碍的。但在另一面,爱因斯坦所不喜欢的量子论迅猛地发展起来,正如我们描述的那样,它的力量很快就超出了人们所能想象的极限。这一次,以量子论为主导,统一是否能够被真正完成了呢?

历史上产生了不少量子引力理论,但我们只想极为简单地描述一个。它近来大红大紫,声名远扬,时髦无比,倘若谁不知道它简直就不好意思出来混。大家一定都明白我说的是超弦(Superstring)理论,许多读者迫使我相信,如果不在最后提一下它,那么我们的史话简直就是一肚子不合时宜。

*********
饭后闲话:霍金打赌

1999年,霍金在一次演讲中说,他愿意以1赔1,赌一个万能理论会在20年内出现。现在是不是真的有人和他打这个赌我暂时不得而知,不过霍金好打赌是出了名的,咱们今天就来闲话几句打赌的话题。

我们所知的霍金打的最早的一个赌或许是他和两个幼年时的伙伴所打的:他们赌今后他们之间是不是会有人出人头地。霍金出名后,还常常和当初的伙伴开玩笑说,因为他打赢了,所以对方欠他一块糖。

霍金33岁时,第一次就科学问题打赌,之后便一发不可收拾。今天我们所熟知的最有名的几个科学赌局,几乎都同他有关。或者也是因为霍金太出名,太容易被媒体炒作渲染的缘故吧。

1974年,黑洞的热潮在物理学界内方兴未艾。人们已经不太怀疑黑洞是一个物理真实,但在天文观测上仍没有找到一个确实的实体。不过已经有几个天体非常可疑,其中一个叫做天鹅座X-1,如果你小时候阅读过80年代的一些科普书籍,你会对这个名字耳熟能详。霍金对这个天体的身份表示怀疑,他和加州理工的物理学家索恩(Kip Thorne)立下字据,以1年的《阁楼》(Penthouse)杂志赌索恩4年的《私家侦探》(Private Eye)。大家也许会对霍金这样的大科学家竟然下这样的赌注而感到惊奇(Penthouse大家想必都知道,是和Playboy齐名的男性杂志,不过最近倒闭了),呵呵,不过饮食男女人之大欲,反正他就是这样赌的。今天大家都已经知道,宇宙中的黑洞多如牛毛,天鹅X-1的身份更是不用怀疑。1990年霍金到南加州大学演讲,当时索恩人在莫斯科,于是霍金大张旗鼓地闯入索恩的办公室,把当年的赌据翻出来印上拇指印表示认输。

霍金后来真的给索恩订了一年的《阁楼》,索恩家里的女性成员对此是有意见的。但那倒也不是对于《阁楼》有什么反感,在美国这种开放社会这不算什么。反对的原因来自女权主义:她们坚持索恩应该赌一份适合both男女阅读的杂志。当年索恩还曾赢了钱德拉塞卡的《花花公子》,出于同样的理由换成了《听众》。

霍金输了这个场子很是不甘,1年后便又找上索恩,同时还有索恩的同事,加州理工的另一位物理学家普雷斯基(John Preskill),赌宇宙中不可能存在裸奇点,负者为对方提供能够包裹“裸体”的衣服。这次霍金不到4个月就发现自己还是要输:黑洞在经过霍金蒸发后的确可能保留一个裸奇点!但霍金在文字上耍赖,声称由于量子过程而产生的裸奇点并不是赌约上描述的那个由于广义相对论而形成的裸奇点,而且那个证明也是不严格的,所以不算。

逃得了初一逃不过十五,1997年德州大学的科学家用超级计算机证明了,当黑洞坍缩时,在非常特别的条件下裸奇点在理论上是可以存在的!霍金终于认输,给他的对手各买了一件T恤衫。但他还是不服气的,他另立赌约,赌虽然在非常特别的条件下存在裸奇点,但在一般情况下它是被禁止的!而且霍金在T恤上写的字更是不依不饶:大自然讨厌裸露!

霍金在索恩那里吃了几次亏了,这次不知是否能翻盘。当然索恩也不是常赌不败的,他曾经和苏联人泽尔多维奇(Zel’dovich)在黑洞辐射的问题上打赌,结果输了一瓶上好的名牌威士忌。有时候霍金和索恩还会联手,比如在黑洞蒸发后是否吐出当初吃掉的信息这一问题上。霍金和索恩赌它不会,而普雷斯基赌它会,赌注是“信息”本身——胜利者将得到一本百科全书!这个问题迄无定论,不过从最近发展的势头来看,霍金又有输的危险。今年(2004年)初,俄亥俄州立大学的科学家用弦论更为明确地证明了,黑洞很可能将吐出信息!

2000年,霍金又和密歇根大学的凯恩(Gordon Kane)赌100美元,说在芝加哥附近的费米实验室里不可能发现所谓的“希格斯玻色子”(这是英国物理学家希格斯于1964年预言的一种有重要理论意义的粒子,但至今尚未证实)。后来他又和欧洲的一些粒子物理学家赌,说日内瓦的欧洲粒子物理实验室里也不可能发现希格斯子。这次霍金算是赢了,至今仍然没有找到希格斯子的踪迹。不过霍金对于这个假设的嘲笑态度使得许多粒子物理学家十分恼火,甚至上升为宇宙物理学家和粒子物理学家之间的一种矛盾。希格斯本人于2002年在报上发表了言词尖刻的评论,说霍金因为名气大,所以人们总是不加判断地相信他说的东西。这也引起了一场不大不小的风波。

在科学问题上打赌的风气由来已久,而根据2002年Nature杂志上的一篇文章(Nature 420, p354),目前在科学的各个领域内各种各样的赌局也是五花八门。这也算是科学另一面的趣味和魅力吧?不知将来是否会有人以此为题材,写出又一篇类似《80天环游地球》的精彩小说呢?



上帝掷骰子吗(12-5)
作者:castor_v_pollux 发表日期:2004-06-07 12:12:46

 
第十二章 新探险



在统一广义相对论和量子论的漫漫征途中,物理学家一开始采用的是较为温和的办法。他们试图采用老的战术,也就是在征讨强、弱作用力和电磁力时用过的那些行之有效的手段,把它同样用在引力的身上。在相对论里,引力被描述为由于时空弯曲而造成的几何效应,而正如我们所看到的,量子场论把基本的力看成是交换粒子的作用,比如电磁力是交换光子,强相互作用力是交换胶子……等等。那么,引力莫非也是交换某种粒子的结果?在还没见到这个粒子之前,人们已经为它取好了名字,就叫“引力子”(graviton)。根据预测,它应该是一种自旋为2,没有质量的玻色子。

可是,要是把所谓引力子和光子等一视同仁地处理,人们马上就发现他们注定要遭到失败。在量子场论内部,无论我们如何耍弄小聪明,也没法叫引力子乖乖地听话:计算结果必定导致无穷的发散项,无穷大!我们还记得,在量子场论创建的早期,物理学家是怎样地被这个无穷大的幽灵所折磨的,而现在情况甚至更糟:就算运用重正化方法,我们也没法把它从理论中赶跑。在这场战争中我们初战告负,现在一切温和的统一之路都被切断,量子论和广义相对论互相怒目而视,作了最后的割席决裂,我们终于认识到,它们是互不相容的,没法叫它们正常地结合在一起!物理学的前途顿时又笼罩在一片阴影之中,相对论的支持者固然不忿气,拥护量子论的人们也有些踌躇不前:要是横下心强攻的话,结局说不定比当年的爱因斯坦更惨,但要是战略退却,物理学岂不是从此陷入分裂而不可自拔?

新希望出现在1968年,但却是由一个极为偶然的线索开始的:它本来根本和引力毫无关系。那一年,CERN的意大利物理学家维尼基亚诺(Gabriel Veneziano)随手翻阅一本数学书,在上面找到了一个叫做“欧拉β函数”的东西。维尼基亚诺顺手把它运用到所谓“雷吉轨迹”(Regge trajectory)的问题上面,作了一些计算,结果惊讶地发现,这个欧拉早于1771年就出于纯数学原因而研究过的函数,它竟然能够很好地描述核子中许多强相对作用力的效应!

维尼基亚诺没有预见到后来发生的变故,他也并不知道他打开的是怎样一扇大门,事实上,他很有可能无意中做了一件使我们超越了时代的事情。威顿(Edward Witten)后来常常说,超弦本来是属于21世纪的科学,我们得以在20世纪就发明并研究它,其实是历史上非常幸运的偶然。

维尼基亚诺模型不久后被3个人几乎同时注意到,他们是芝加哥大学的南部阳一郎,耶希华大学(Yeshiva Univ)的萨斯金(Leonard Susskind)和玻尔研究所的尼尔森(Holger Nielsen)。三人分别证明了,这个模型在描述粒子的时候,它等效于描述一根一维的“弦”!这可是非常稀奇的结果,在量子场论中,任何基本粒子向来被看成一个没有长度也没有宽度的小点,怎么会变成了一根弦呢?

虽然这个结果出人意料,但加州理工的施瓦茨(John Schwarz)仍然与当时正在那里访问的法国物理学家谢尔克(Joel Scherk)合作,研究了这个理论的一些性质。他们把这种弦当作束缚夸克的纽带,也就是说,夸克是绑在弦的两端的,这使得它们永远也不能单独从核中被分割出来。这听上去不错,但是他们计算到最后发现了一些古怪的东西。比如说,理论要求一个自旋为2的零质量粒子,但这个粒子却在核子家谱中找不到位置(你可以想象一下,如果某位化学家找到了一种无法安插进周期表里的元素,他将会如何抓狂?)。还有,理论还预言了一种比光速还要快的粒子,也即所谓的“快子”(tachyon)。大家可能会首先想到这违反相对论,但严格地说,在相对论中快子可以存在,只要它的速度永远不降到光速以下!真正的麻烦在于,如果这种快子被引入量子场论,那么真空就不再是场的最低能量态了,也就是说,连真空也会变得不稳定,它必将衰变成别的东西!这显然是胡说八道。

更令人无法理解的是,如果弦论想要自圆其说,它就必须要求我们的时空是26维的!平常的时空我们都容易理解:它有3维空间,外加1维时间,那多出来的22维又是干什么的?这种引入多维空间的理论以前也曾经出现过,如果大家还记得在我们的史话中曾经小小地出过一次场的,玻尔在哥本哈根的助手克莱恩(Oskar Klein),也许会想起他曾经把“第五维”的思想引入薛定谔方程。克莱恩从量子的角度出发,而在他之前,爱因斯坦的忠实追随者,德国数学家卡鲁扎(Theodor Kaluza)从相对论的角度也作出了同样的尝试。后来人们把这种理论统称为卡鲁扎-克莱恩理论(Kaluza-Klein Theory,或KK理论)。但这些理论最终都胎死腹中。的确很难想象,如何才能让大众相信,我们其实生活在一个超过4维的空间中呢?

最后,量子色动力学(QCD)的兴起使得弦论失去了最后一点吸引力。正如我们在前面所述,QCD成功地攻占了强相互作用力,并占山为王,得到了大多数物理学家的认同。在这样的内外交困中,最初的弦论很快就众叛亲离,被冷落到了角落中去。

在弦论最惨淡的日子里,只有施瓦茨和谢尔克两个人坚持不懈地沿着这条道路前进。1971年,施瓦茨和雷蒙(Pierre Ramond)等人合作,把原来需要26维的弦论简化为只需要10维。这里面初步引入了所谓“超对称”的思想,每个玻色子都对应于一个相应的费米子(玻色子是自旋为整数的粒子,如光子。而费米子的自旋则为半整数,如电子。粗略地说,费米子是构成“物质”的粒子,而玻色子则是承载“作用力”的粒子)。与超对称的联盟使得弦论获得了前所未有的力量,使它可以同时处理费米子,更重要的是,这使得理论中的一些难题(如快子)消失了,它在引力方面的光明前景也逐渐显现出来。可惜的是,在弦论刚看到一线曙光的时候,谢尔克出师未捷身先死,他患有严重的糖尿病,于1980年不幸去世。施瓦茨不得不转向伦敦玛丽皇后学院的迈克尔&#8226;格林(Michael Green),两人最终完成了超对称和弦论的结合。他们惊讶地发现,这个理论一下子犹如脱胎换骨,完成了一次强大的升级。现在,老的“弦论”已经死去了,新生的是威力无比的“超弦”理论,这个“超”的新头衔,是“超对称”册封给它的无上荣耀。

当把他们的模型用于引力的时候,施瓦茨和格林狂喜得能听见自己的心跳声。老的弦论所预言的那个自旋2质量0的粒子虽然在强子中找不到位置,但它却符合相对论!事实上,它就是传说中的“引力子”!在与超对称同盟后,新生的超弦活生生地吞并了另一支很有前途的军队,即所谓的“超引力理论”。现在,谢天谢地,在计算引力的时候,无穷大不再出现了!计算结果有限而且有意义!引力的国防军整天警惕地防卫粒子的进攻,但当我们不再把粒子当作一个点,而是看成一条弦的时候,我们就得以瞒天过海,暗渡陈仓,绕过那条苦心布置的无穷大防线,从而第一次深入到引力王国的纵深地带。超弦的本意是处理强作用力,但现在它的注意力完全转向了引力:天哪,要是能征服引力,别的还在话下吗?

关于引力的计算完成于1982年前后,到了1984年,施瓦茨和格林打了一场关键的胜仗,使得超弦惊动整个物理界:他们解决了所谓的“反常”问题。本来在超弦中有无穷多种的对称性可供选择,但施瓦茨和格林经过仔细检查后发现,只有在极其有限的对称形态中,理论才得以消除这些反常而得以自洽。这样就使得我们能够认真地考察那几种特定的超弦理论,而不必同时对付无穷多的可能性。更妙的是,筛选下来的那些群正好可以包容现有的规范场理论,还有粒子的标准模型!伟大的胜利!

“第一次超弦革命”由此爆发了,前不久还对超弦不屑一顾,极其冷落的物理界忽然像着了魔似的,倾注出罕见的热情和关注。成百上千的人们争先恐后,前仆后继地投身于这一领域,以致于后来格劳斯(David Gross)说:“在我的经历中,还从未见过对一个理论有过如此的狂热。”短短3年内,超弦完成了一次极为漂亮的帝国反击战,将当年遭受的压抑之愤一吐为快。在这期间,像爱德华&#8226;威顿,还有以格劳斯为首的“普林斯顿超弦四重奏”小组都作出了极其重要的贡献,不过我们没法详细描述了。网上关于超弦的资料繁多,如果有兴趣的读者可以参考这个详细的资料索引:

http://arxiv.org/abs/hep-th/0311044

第一次革命过后,我们得到了这样一个图像:任何粒子其实都不是传统意义上的点,而是开放或者闭合(头尾相接而成环)的弦。当它们以不同的方式振动时,就分别对应于自然界中的不同粒子(电子、光子……包括引力子!)。我们仍然生活在一个10维的空间里,但是有6个维度是紧紧蜷缩起来的,所以我们平时觉察不到它。想象一根水管,如果你从很远的地方看它,它细得就像一条线,只有1维的结构。但当真把它放大来看,你会发现它是有横截面的!这第2个维度被卷曲了起来,以致于粗看之下分辨不出。在超弦的图像里,我们的世界也是如此,有6个维度出于某种原因收缩得非常紧,以致粗看上去宇宙仅仅是4维的(3维空间加1维时间)。但如果把时空放大到所谓“普朗克空间”的尺度上(大约10^-33厘米),这时候我们会发现,原本当作是时空中一个“点”的东西,其实竟然是一个6维的“小球”!这6个卷曲的维度不停地扰动,从而造成了全部的量子不确定性!

这次革命使得超弦声名大振,隐然成为众望所归的万能理论候选人。当然,也有少数物理学家仍然对此抱有怀疑态度,比如格拉肖,费因曼。霍金对此也不怎么热情。大家或许还记得我们在前面描述过,在阿斯派克特实验后,BBC的布朗和纽卡斯尔大学的戴维斯对几位量子论的专家做了专门访谈。现在,当超弦热在物理界方兴未艾之际,这两位仁兄也没有闲着,他们再次出马,邀请了9位在弦论和量子场论方面最杰出的专家到BBC做了访谈节目。这些记录后来同样被集合在一起,于1988年以《超弦:万能理论?》为名,由剑桥出版社出版。阅读这些记录可以发现,专家们虽然吵得不像量子论那样厉害,但其中的分歧仍是明显的。费因曼甚至以一种饱经沧桑的态度说,他年轻时注意到许多老人迂腐地抵制新思想(比如爱因斯坦抵制量子论),但当他自己也成为一个老人时,他竟然也身不由己地做起同样的事情,因为一些新思想确实古怪——比如弦论就是!

人们自然而然地问,为什么有6个维度是蜷缩起来的?这6个维度有何不同之处?为什么不是5个或者8个维度蜷缩?这种蜷缩的拓扑性质是怎样的?有没有办法证明它?因为弦的尺度是如此之小(普朗克空间),所以人们缺乏必要的技术手段用实验去直接认识它,而且弦论的计算是如此繁难,不用说解方程,就连方程本身我们都无法确定,而只有采用近似法!更糟糕的是,当第一次革命过去后,人们虽然大浪淘沙,筛除掉了大量的可能的对称,却仍有5种超弦理论被保留了下来,每一种理论都采用10维时空,也都能自圆其说。这5种理论究竟哪一种才是正确的?人们一鼓作气冲到这里,却发现自己被困住了。弦论的热潮很快消退,许多人又回到自己的本职领域中去,第一次革命尘埃落定。

一直要到90年代中期,超弦才再次从沉睡中苏醒过来,完成一次绝地反攻。这次唤醒它的是爱德华&#8226;威顿。在1995年南加州大学召开的超弦年会上,威顿让所有的人都吃惊不小,他证明了,不同耦合常数的弦论在本质上其实是相同的!我们只能用微扰法处理弱耦合的理论,也就是说,耦合常数很小,在这样的情况下5种弦论看起来相当不同。但是,假如我们逐渐放大耦合常数,它们应当是一个大理论的5个不同的变种!特别是,当耦合常数被放大时,出现了一个新的维度——第11维!这就像一张纸只有2维,但你把许多纸叠在一起,就出现了一个新的维度——高度!

换句话说,存在着一个更为基本的理论,现有的5种超弦理论都是它在不同情况的极限,它们是互相包容的!这就像那个著名的寓言——盲人摸象。有人摸到鼻子,有人摸到耳朵,有人摸到尾巴,虽然这些人的感觉非常不同,但他们摸到的却是同一头象——只不过每个人都摸到了一部分而已!格林(Brian Greene)在1999年的《优雅的宇宙》中举了一个相当搞笑的例子,我们把它发挥一下:想象一个热带雨林中的土著喜欢水,却从未见过冰,与此相反,一个爱斯基摩人喜欢冰,但因为他生活的地方太寒冷,从未见过液态的水的样子(无疑现实中的爱斯基摩人见过水,但我们可以进一步想象他生活在土星的光环上,那就不错了),两人某天在沙漠中见面,为各自的爱好吵得不可开交。但奇妙的事情发生了:在沙漠炎热的白天,爱斯基摩人的冰融化成了水!而在寒冷的夜晚,水又重新冻结成了冰!两人终于意识到,原来他们喜欢的其实是同一样东西,只不过在不同的条件下形态不同罢了。

这样一来,5种超弦就都被包容在一个统一的图像中,物理学家们终于可以松一口气。这个统一的理论被称为“M理论”。就像没人知道为啥007电影中的那个博士发明家叫做“Q”(扮演他的老演员于1999年车祸去世了,在此纪念一下),也没人知道这个“M”确切代表什么意思,或许发明者的本意是指“母亲”(Mother),说明它是5种超弦的母理论,但也有人认为是“神秘”(Mystery),或者“矩阵”(Matrix),或者“膜”(Membrane)。有些中国人喜欢称其为“摸论”,意指“盲人摸象”!

在M理论中,时空变成了11维,由此可以衍生出所有5种10维的超弦论来。事实上,由于多了一维,我们另有一个超引力的变种,因此一共是6个衍生品!这时候我们再考察时空的基本结构,会发现它并非只能是1维的弦,而同样可能是0维的点,2维的膜,或者3维的泡泡,或者4维的……我想不出4维的名头。实际上,这个基本结构可能是任意维数的——从0维一直到9维都有可能!M理论的古怪,比起超弦还要有过之而无不及。

不管超弦还是M理论,它们都刚刚起步,还有更长的路要走。虽然异常复杂,但是超弦/M理论仍然取得了一定的成功,甚至它得以解释黑洞熵的问题——1996年,施特罗明格(Strominger)和瓦法(Vafa)的论文为此开辟了道路。在那之前不久的一次讲演中,霍金还挖苦说:“弦理论迄今为止的表现相当悲惨:它甚至不能描述太阳结构,更不用说黑洞了。”不过他最终还是改变了看法而加入弦论的潮流中来。M理论是“第二次超弦革命”的一部分,如今这次革命的硝烟也已经散尽,超弦又进入一个蛰伏期。PBS后来在格林的书的基础上做了有关超弦的电视节目,在公众中引起了相当的热潮。或许不久就会有第三次第四次超弦革命,从而最终完成物理学的统一,我们谁也无法预见。

值得注意的是,自弦论以来,我们开始注意到,似乎量子论的结构才是更为基本的。以往人们喜欢先用经典手段确定理论的大框架,然后在细节上做量子论的修正,这可以称为“自大而小”的方法。但在弦论里,必须首先引进量子论,然后才导出大尺度上的时空结构!人们开始认识到,也许“自小而大”才是根本的解释宇宙的方法。如今大多数弦论家都认为,量子论在其中扮演了关键的角色,量子结构不用被改正。而广义相对论的路子却很可能是错误的,虽然它的几何结构极为美妙,但只能委屈它退到推论的地位——而不是基本的基础假设!许多人相信,只有更进一步地依赖量子的力量,超弦才会有一个比较光明的未来。我们的量子虽然是那样的古怪,但神赋予它无与伦比的力量,将整个宇宙都控制在它的光辉之下。

上帝掷骰子吗(后记,主要参考资料与附录)
作者:castor_v_pollux 发表日期:2004-06-07 12:14:14

 
后记

这个有关量子论的系列自去年开始动笔,其间因为各种原因(包括本人不可思议的懒惰),写写停停,到最后完成时用了正好差不多一年时间。最需要感谢的是读者们异乎寻常的热情和支持,不然我很可能半途而废。

我最初构想的规模只是一篇4,5万字的极简介绍,不料逐渐收不住笔,最后完成的时候在我的WORD里已经超过200页,25万字,当时真是不敢想象。这不是专业的科普,事实上,我更注重的是历史方面而不是科学方面,不过读者可以在其中获得一个基本的量子论的科学概念。我努力使它成为极通俗的读物,事实上,我仅仅假定读者具有初中的数学水平和一点点高中物理知识(如果你具有以上水平但仍看不懂某些内容,那一定是我写作的问题^_^)。即使是对数理完全不通,我也希望你可以从中得到一点启示。但不可避免地,运用日常化的语言会使一些描述显得牵强附会,不符合物理上的概念。所以再次强调,这不是专业的科普,如果想获得对量子论更好更准确的认识,各位还是参考一些专业书籍。上帝是数学家,唯一能够描述宇宙的语言是数学!我们的史话也非专业的科学史,它仅仅是供各位茶余饭后消遣的读物而已,如果有人竟然凭借这个系列而证明了某些“伟大理论”,那我可受宠若惊,担当不起。其实,我和各位一样是门外汉,只要各位能够和我共同分享一些由量子论带来的激动和惊奇,我便已经心满意足。

这个系列是本人业余时间在网上完成的,一来水平问题,二来毕竟业余时间有限,所以无疑存在为数众多的bugs。虽然我努力使描述符合历史与事实(一般来说,除了一些明显的虚构情节外,本文中的历史场景都是有依据的),但有些地方确实没能查阅更多的资料以进一步核实(比如我曾经想啃完那6本大块头的量子力学发展史,不过最终还是留下一些没看完)。我已经发现了一些错误之处,在将来的修订中会改正过来,也希望各位指出更多的地方。另外,由于写了很长时间,所以没有很好地规划,比如第4章只写了4节,而有些重要的方面却忘了描写,或者没法插进现有的叙事结构中去。比如玻色-爱因斯坦统计,斯特恩-格拉赫实验,量子加密术,等等。现在这个只是初稿,其中有些章节很罗嗦,有些地方枯燥无味,有些比喻莫名其妙,还有一些名词翻译的问题,以及一些东拼西凑的痕迹,修订的时候我会试图解决这些问题,并配上一些插图。

我有意使文字风格靠近同龄人的语境,也就是7,80年代的风格。这是一种取巧的办法,因为这些是网上的主要人口,不过我很高兴它带有一些网络特色。为了追求可读性,在不改变基本事实的前提下,我有的时候做了一点文字上的夸张(比如历史上的玻尔-爱因斯坦之争很可能没有我所描写得那样戏剧化),我为此表示抱歉,也希望这不会损害读者对我的信心。这篇文字主要还是在网上流行(因为有人辛苦转贴,所以它似乎流传很广),有些读者很希望它可以出版,也许修订后有人真的愿意出版它,不过由于本人的效率低下,这一天似乎还遥遥无期,呵呵。

关于本文任何的意见,比如知识错误,信息过时,文字风格,遗漏与补充,哲学观与讨论,都可以发信到castor_v_pollux@yahoo.com,我很乐意听取各位的意见,也算是网络文字的一种互动形式。

最后,把这篇文章送给那个女孩,以回赠她曾经送给我的那些可爱笑容。

CAPO
2004.5


主要参考资料:

I. 书(中文名的是中译本,没有出版社的是网上版):

The Historical Development of Quantum Theory I-VI, Jagdish Mehra&Helmut Rechenberg, Springer 1982-
最详尽和权威的量子力学发展史,共6大册,有大量的资料

An Introduction to Quantum Theory, Keith Hannabuss, Oxford 1997
不错的量子力学教科书

Quantum Theory, David Bohm, Constable 1951
玻姆经典的量力教科书

The Strange Story of the Quantum, Banesh Hoffmann, Dover 1959
霍夫曼的经典量子科普,虽然年代久远,但对我们的史话借鉴颇多

100 Years of Planck’s Quantum, Ian Duck&E.C.G. Sundarshan, World Scientific 2000
量子百年回顾,收集了量子发展史上的经典论文

Beyond the Quantum, Michael Talbot, Bantam Books 1988
关于量子思想和发展史的评述

The Construction of Modern Science, R.S. Westfall, Cambridge 1977
介绍早期近代科学的发展,可以找到光学和力学的发展史

Never at Rest, R.S. Westfall, Cambridge 1980
牛顿的标准传记,着重参考他发展光学的历史

The Newton Handbook, Gerek Gjertsen, Routledge&Kegan Paul 1986
关于牛顿的细节琐事,可以找到有关他的名言的资料

The Man Who Knew Too Much, Stephen Inwood, MacMilan 2002
最新的胡克传记,参考了胡克的有关事迹

Thomas Young, Natural Philosopher, Alexander Wood, Cambridge 1954
杨的标准传记

Niels Bohr: Gentle Genius of Denmark, Spangenburg&Moser, Facts on File 1995
最新的玻尔传记

Niels Bohr: The Man, His Science & The World They Changed, Ruth Moore, Knopf 1966
老的玻尔标准传记,简洁精悍

Niels Bohr’s Times: in Physics, Philosophy and Polity, Abraham Pais, Oxford 1991
派斯的关于玻尔的书,在一些问题上有补充价值

Uncertainty: The Life and Science of Werner Heisenberg, David Cassidy, Freeman 1992
海森堡的标准传记,着重参考矩阵力学和不确定原理的创立过程

Niels Bohr: A Centenary Volume, French & Kennedy, Harvard 1985
关于玻尔的有关回忆和资料,哥本哈根研究所的故事

尼尔斯&#8226;玻尔哲学文选,戈革译
戈革先生是公认的玻尔专家,强烈推荐,可领略玻尔的博大思想

物理学与哲学, Heisenber, 范岱年译
网上的海森堡的译作,可参考关于哥本哈根解释

Schrodinger: Life and Thought, Walter Moore, Cambridge 1989
薛定谔的标准传记,着重参考波动力学的创立过程

Dirac: A Scientific Biography, Helge Kragh, Cambridge 1990
狄拉克的标准传记

爱因斯坦传,聂运伟
我手里反而没有爱因斯坦的合适资料,这个是网上流行的爱因斯坦传

In Search of Schrodinger’s Cat, John Gribbin, Wildwood House 1984
Gribbin的名著,一本量子力学极简史

Schrodinger’s Kittens and the Search for Reality, John Gribbin, Weidenfeld&Nicolson 1995
上一本的续作,介绍了一些新的发展

Copenhagen, Michael Frayn, Methuen 1998
《哥本哈根》一剧的剧本

Heisenberg and the Nazi Atomic Bomb Project, Paul Rose, UC Berkeley 1998
Hitler’s Uranium Club, Jeremy Bernstein, AIP 1996
以上两本是关于海森堡和德国原子弹计划的详尽历史分析

The Emperor’s New Mind, Roger Penrose, Oxford 1989
彭罗斯关于计算机人工智能和精神的名著。其中也讨论了量子论,量子引力等问题。

Speakable and Unspeakable in Quantum Mechanics, J.S. Bell, Cambridge 1987
贝尔的论文集

The Ghost in the Atom, P.Davis&J.Brown, Cambridge 1986
BBC在阿斯派克特实验后对于量子专家们的访谈记录

The Metaphysics of Quantum Theory, Henry Krips, Oxford 1987
量子论的形而上学讨论,有包括Stapp在内的主要不同见解者的介绍

The Philosophy of Quantum Mechanics, Richard Healey, Cambridge 1989
关于量子哲学的讨论

The Intepretation of Quantum Mechanics, Roland Omnès, Princeton 1994
Omnès的量子教科书,有各种量子解释的全面介绍和讨论,主要有退相干历史的说明

The Fabric of Reality, David Deutsch, Allen Lane 1997
德义奇的通俗著作,可找到量子计算机和多宇宙的详尽介绍

The Quark and the Jaguar, Murray Gell-Mann, Freeman 1994
盖尔曼的通俗作品,可以找到退相干历史的通俗解释

时间简史(A Brief History of Time), S.Hawking,许明贤、吴忠超译
大家都熟悉的名作。可参考关于打赌的某些片断,以及一些量子引力问题

Black Holes and Time Warps, Kip Thorne, W.W.Norton 1994
主要讲黑洞问题,但可找到霍金打赌的一些片断

时间之箭(The Arrow of Time), P.Coveney&R. Highfield
这个是的网上中译本,主要讲时间之矢的问题,有量子论的一般介绍

Superstrings, A Theory of Everything? P.Davis&J.Brown, Cambridge 1988
BBC对于超弦专家们的访谈记录

The Elegant Universe, Brian Greene, W.W. Norton 1999
畅销的介绍弦论的新科普书

20世纪物理学史, 魏凤文&申先甲, 江西教育出版社1994
不错的20世纪物理史简介,参考量子场论的发展

物理学思想史,杨仲耆&申先甲,湖南教育出版社1993
一本物理学通史

波普尔文集
网上有相当全的波普尔文集,可以参考他对于量子论的看法

II. 文章

D. Cassidy, Phys. Today July 2000, p28
有关海森堡1941年在哥本哈根同玻尔的会面

Max Tegmark, Fortschr. Phys. 46 p855
Tegmark宣传MWI的文章

Aspect et al, Phys. Rev. Lett. 49 p91
阿斯派克特的实验报告

A. Aspect, Nature 398 p189
阿斯派克特亲自写的关于贝尔不等式实验的简史

Anton Zeilinger, Nature 408 p639
Tegmark&Wheeler, Scientific American Feb 2001, p68
以上两篇是量子论百年的回顾和展望

Yurke&Stoler, Phys. Rev. Lett. 68, p1251
Jennewein et al, Phys. Rev. Lett. 88, 017903
Aerts et al, Found.
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|手机版|Archiver|盗版岩与酒 ( 京ICP备05053585号 )

GMT+8, 2024-11-23 16:30 , Processed in 0.369533 second(s), 18 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表